Amnion-Based Biomaterials for Musculoskeletal Regenerative Engineering

JW D. Skin transplantation with a review of 550 cases at the Johns Hopkins Hospital. Johns Hopkins Med J. 1910;15:96.

Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring H-J, Evangelista M, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells. 2008;26:300–11. https://doi.org/10.1634/stemcells.2007-0594.

Article  Google Scholar 

Escobar Ivirico JL, Bhattacharjee M, Kuyinu E, Nair LS, Laurencin CT. Regenerative engineering for knee osteoarthritis treatment: biomaterials and cell-based technologies. Engineer. 2017;3:16–27. https://doi.org/10.1016/J.ENG.2017.01.003.

Article  Google Scholar 

Yang L, Sun L, Zhang H, Bian F, Zhao Y. Ice-inspired lubricated drug delivery particles from microfluidic electrospray for osteoarthritis treatment. ACS Nano. 2021;15:20600–6. https://doi.org/10.1021/acsnano.1c09325.

Article  CAS  Google Scholar 

Lei Y, Zhang Q, Kuang G, Wang X, Fan Q, Ye F. Functional biomaterials for osteoarthritis treatment: from research to application. Smart Med. 2022:1. https://doi.org/10.1002/smmd.20220014.

Yang L, Wang X, Yu Y, Shang L, Xu W, Zhao Y. Bio-inspired dual-adhesive particles from microfluidic electrospray for bone regeneration. Nano Res. 2023;16:5292–9. https://doi.org/10.1007/s12274-022-5202-9.

Article  CAS  Google Scholar 

Bennett JP, Matthews R, Faulk WP. Treatment of chronic ulceration of the legs with human amnion. Lancet. 1980;315:1153–6. https://doi.org/10.1016/S0140-6736(80)91616-5.

Article  Google Scholar 

Ke M, Cj D. Human amnion in the treatment of vaginal malformations. BJOG An Int J Obstet Gynaecol. 1986;93:50–4. https://doi.org/10.1111/j.1471-0528.1986.tb07813.x.

Article  Google Scholar 

Fernandes M, Sridhar MS, Sangwan VS, Rao GN. Amniotic membrane transplantation for ocular surface reconstruction. Cornea. 2005;24:643–53. https://doi.org/10.1097/01.ico.0000151501.80952.c5.

Article  Google Scholar 

Lee SH, Tseng SCG. Amniotic membrane transplantation for persistent epithelial defects with ulceration. Am J Ophthalmol. 1997;123:303–12. https://doi.org/10.1016/S0002-9394(14)70125-4.

Article  CAS  Google Scholar 

Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cells Mater. 2008;15:88–99. https://doi.org/10.22203/ecm.v015a07.

Article  CAS  Google Scholar 

Mamede AC, Carvalho MJ, Abrantes AM, Laranjo M, Maia CJ, Botelho MF. Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res. 2012;349:447–58. https://doi.org/10.1007/s00441-012-1424-6.

Article  CAS  Google Scholar 

Chopra A, Thomas BS. Amniotic membrane: a novel material for regeneration and repair. Biomimetics Biomater tissue Eng. 2013;18:1–8.

Google Scholar 

Insausti CL, Blanquer M, Bleda P, Iniesta P, Majado MJ, Castellanos G, et al. The amniotic membrane as a source of stem cells. Histol Histopathol. 2010;25:91–8. https://doi.org/10.14670/HH-25.91.

Article  CAS  Google Scholar 

Jahanafrooz Z, Bakhshandeh B, Behnam Abdollahi S, Seyedjafari E. Human amniotic membrane as a multifunctional biomaterial: recent advances and applications. J Biomater Appl. 2022;37:1341–54. https://doi.org/10.1177/08853282221137609.

Article  CAS  Google Scholar 

Fénelon M, Catros S, Meyer C, Fricain JC, Obert L, Auber F, et al. Applications of human amniotic membrane for tissue engineering. Membranes (Basel). 2021;11:387. https://doi.org/10.3390/membranes11060387.

Article  CAS  Google Scholar 

Rocha SCM, Maia Baptista CJ. Biochemical properties of amnioticmembrane. Amniotic Membr Orig Charact Med Appl. Dordrecht:Springer Netherlands 2015. 19–40

Aplin JD, Campbell S, Allen TD. The extracellular matrix of human amniotic epithelium: ultrastructure, composition and deposition. J Cell Sci. 1985;79:119–36. https://doi.org/10.1242/jcs.79.1.119.

Article  CAS  Google Scholar 

Dua HS, Gomes JAP, King AJ, Maharajan VS. The amniotic membrane in ophthalmology. Surv Ophthalmol. 2004;49:51–77. https://doi.org/10.1016/j.survophthal.2003.10.004.

Article  Google Scholar 

Baradaran-Rafii A, Aghayan H-R, Arjmand B, Javadi M-A. Amniotic membrane transplantation. Iran J Ophthalmic Res. 2007;2:58–75.

Google Scholar 

Miki T, Lehmann T, Cai H, Stolz DB, Strom SC. Stem cell characteristics of amniotic epithelial cells. Stem Cells. 2005;23:1549–59. https://doi.org/10.1634/stemcells.2004-0357.

Article  CAS  Google Scholar 

Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U. Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod. 2007;77:577–88. https://doi.org/10.1095/biolreprod.106.055244.

Article  CAS  Google Scholar 

Tamagawa T, Ishiwata I, Saito S. Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro. Hum Cell. 2004;17:125–30. https://doi.org/10.1111/j.1749-0774.2004.tb00028.x.

Article  Google Scholar 

Zhang Y, Li C, Jiang X, Zhang S, Wu Y, Liu B, et al. Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Exp Hematol. 2004;32:657–64. https://doi.org/10.1016/j.exphem.2004.04.001.

Article  CAS  Google Scholar 

Kobayashi M, Yakuwa T, Sasaki K, Sato K, Kikuchi A, Kamo I, et al. Multilineage potential of side population cells from human amnion mesenchymal layer. Cell Transplant. 2008;17:291–301. https://doi.org/10.3727/096368908784153904.

Article  CAS  Google Scholar 

Portmann-Lanz CB, Schoeberlein A, Huber A, Sager R, Malek A, Holzgreve W, et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol. 2006;194:664–73. https://doi.org/10.1016/j.ajog.2006.01.101.

Article  CAS  Google Scholar 

Solomon A, Rosenblatt M, Monroy D, Ji Z, Pflugfelder SC, Tseng SCG. Suppression of interleukin 1 α and interleukin 1 β in human limbal epithelial cells cultured on the amniotic membrane stromal matrix. Br J Ophthalmol. 2001;85:444–9. https://doi.org/10.1136/bjo.85.4.444.

Article  CAS  Google Scholar 

Hao Y, Ma DHK, Hwang DG, Kim WS, Zhang F. Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea. 2000;19:348–52. https://doi.org/10.1097/00003226-200005000-00018.

Article  CAS  Google Scholar 

Kim JS, Kim JC, Na BK, Jeong JM, Song CY. Amniotic membrane patching promotes healing and inhibits proteinase activity on wound healing following acute corneal alkali burn. Exp Eye Res. 2000;70:329–37. https://doi.org/10.1006/exer.1999.0794.

Article  CAS  Google Scholar 

Higa K, Shimmura S, Shimazaki J, Tsubota K. Hyaluronic acid-CD44 interaction mediates the adhesion of lymphocytes by amniotic membrane stroma. Cornea. 2005;24:206–12. https://doi.org/10.1097/01.ico.0000133999.45262.83.

Article  Google Scholar 

Magatti M, Caruso M, De Munari S, Vertua E, De D, Manuelpillai U, et al. Human amniotic membrane-derived mesenchymal and epithelial cells exert different effects on monocyte-derived dendritic cell differentiation and function. Cell Transplant. 2015;24:1733–52. https://doi.org/10.3727/096368914X684033.

Article  Google Scholar 

Fairbairn NG, Randolph MA, Redmond RW. The clinical applications of human amnion in plastic surgery. J Plast Reconstr Aesthetic Surg. 2014;67:662–75. https://doi.org/10.1016/j.bjps.2014.01.031.

Article  CAS  Google Scholar 

Tseng SCG, Li DQ, Ma X. Suppression of transforming growth factor-beta isoforms, TGF-β receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol. 1999;179:325–35.

Article  CAS  Google Scholar 

Sant Anna LB, Cargnoni A, Ressel L, Vanosi G, Parolini O. Amniotic membrane application reduces liver fibrosis in a bile duct ligation rat model. Cell Transplant. 2011;20:441–53. https://doi.org/10.3727/096368910X522252.

Article  Google Scholar 

Koizumi N, Inatomi T, Sotozono C, Fullwood NJ, Quantock AJ, Kinoshita S. Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res. 2000;20:173–7.

Article  CAS  Google Scholar 

Fetterolf DE, Snyder RJ. Scientific and clinical support for the use of dehydrated amniotic membrane in wound management. Wounds. 2012;24:299–307.

Google Scholar 

Otsuka T, Kan HM, Laurencin CT. Regenerative engineering approaches to scar-free skin regeneration. Regen Eng Transl Med. 2022;8:225–47. https://doi.org/10.1007/s40883-021-00229-8.

Article  CAS  Google Scholar 

King AE, Paltoo A, Kelly RW, Sallenave JM, Bocking AD, Challis JRG. Expression of natural antimicrobials by human placenta and fetal membranes. Placenta. 2007;28:161–9. https://doi.org/10.1016/j.placenta.2006.01.006.

Article  CAS  Google Scholar 

Buhimschi IA, Jabr M, Buhimschi CS, Petkova AP, Weiner CP, Saed GM. The novel antimicrobial peptide β3-defensin is produced by the amnion: a possible role of the fetal membranes in innate immunity of the amniotic cavity. Am J Obstet Gynecol. 2004;191:1678–87. https://doi.org/10.1016/j.ajog.2004.03.081.

Article  CAS  Google Scholar 

Tehrani FA, Modaresifar K, Azizian S, Niknejad H. Induction of antimicrobial peptides secretion by IL-1β enhances human amniotic membrane for regenerative medicine. Sci Rep. 2017;7:17022. https://doi.org/10.1038/s41598-017-17210-7.

Article  CAS  Google Scholar 

Kim HS, Cho JH, Park HW, Yoon H, Kim MS, Kim SC. Endotoxin-neutralizing antimicrobial proteins of the human placenta. J Immunol. 2002;168:2356–64. https://doi.org/10.4049/jimmunol.168.5.2356.

Article  CAS  Google Scholar 

Zare-Bidaki M, Sadrinia S, Erfani S, Afkar E, Ghanbarzade N. Antimicrobial properties of amniotic and chorionic membranes: a comparative study of two human fetal sacs. J Reprod Infertil. 2017;18:218–24.

Google Scholar 

Niknejad H, Yazdanpanah G, Ahmadiani A. Induction of apoptosis, stimulation of cell-cycle arrest and inhibition of angiogenesis make human amnion-derived cells promising sources for cell therapy of cancer. Cell Tissue Res. 2016;363:599–608. https://doi.org/10.1007/s00441-016-2364-3.

Article  CAS 

留言 (0)

沒有登入
gif