MicroRNAs as a Tool for Differential Diagnosis of Neuromuscular Disorders

Arnold, W. D., et al. (2014). Electrophysiological biomarkers in spinal muscular atrophy: Preclinical proof of concept. Annals of Clinical Translational Neurology, 1(1), 34–44.

Article  PubMed  Google Scholar 

Arnold, W. D., Kassar, D., & Kissel, J. T. (2015). Spinal muscular atrophy: Diagnosis and management in a new therapeutic era. Muscle and Nerve, 51(2), 157–167.

Article  CAS  PubMed  Google Scholar 

Awasthi, K., et al. (2019). The inherited neuromuscular disorder GNE myopathy: Research to patient care. Neurology India, 67(5), 1213–1219.

Article  PubMed  Google Scholar 

Barresi, R. (2011). From proteins to genes: Immunoanalysis in the diagnosis of muscular dystrophies. Skelet Muscle, 1(1), 24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birnkrant, D. J., et al. (2018). Diagnosis and management of Duchenne muscular dystrophy, part 2: Respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurology, 17(4), 347–361.

Article  PubMed  Google Scholar 

Bulaklak, K., et al. (2018). MicroRNA-206 downregulation improves therapeutic gene expression and motor function in MDX mice. Molecular Therapy: Nucleic Acids, 12, 283–293.

PubMed  PubMed Central  Google Scholar 

Bushby, K., Norwood, F., & Straub, V. (2007). The limb-girdle muscular dystrophies–diagnostic strategies. Biochimica et Biophysica Acta, 1772(2), 238–242.

Article  CAS  PubMed  Google Scholar 

Cacchiarelli, D., et al. (2010). MicroRNAs involved in molecular circuitries relevant for the Duchenne muscular dystrophy pathogenesis are controlled by the dystrophin/nNOS pathway. Cell Metabolism, 12(4), 341–351.

Article  CAS  PubMed  Google Scholar 

Cassandrini, D., et al. (2017). Congenital myopathies: Clinical phenotypes and new diagnostic tools. Italian Journal of Pediatrics, 43(1), 101.

Article  PubMed  PubMed Central  Google Scholar 

Coenen-Stass, A. M. L., Wood, M. J. A., & Roberts, T. C. (2017). Biomarker potential of extracellular miRNAs in Duchenne Muscular dystrophy. Trends in Molecular Medicine, 23(11), 989–1001.

Article  CAS  PubMed  Google Scholar 

D’Amico, A., et al. (2011). Spinal muscular atrophy. Orphanet Journal of Rare Diseases, 6, 71.

Article  PubMed  PubMed Central  Google Scholar 

Di Pietro, L., et al. (2017). Potential therapeutic targets for ALS: MIR206, MIR208b and MIR499 are modulated during disease progression in the skeletal muscle of patients. Science and Reports, 7(1), 9538.

Article  Google Scholar 

Freund, A. A., et al. (2007). Duchenne and Becker muscular dystrophy: A molecular and immunohistochemical approach. Arquivos De Neuro-Psiquiatria, 65(1), 73–76.

Article  PubMed  Google Scholar 

Giordani, L., et al. (2014). Muscle-specific microRNAs as biomarkers of Duchenne muscular dystrophy progression and response to therapies. Rare Dis, 2(1), e974969.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hawley, Z. C. E., et al. (2017). MotomiRs: MiRNAs in motor neuron function and disease. Frontiers in Molecular Neuroscience, 10, 127.

Article  PubMed  PubMed Central  Google Scholar 

Hoye, M. L., et al. (2017). MicroRNA profiling reveals marker of motor neuron disease in ALS models. Journal of Neuroscience, 37(22), 5574–5586.

Article  CAS  PubMed  Google Scholar 

Hu, J., et al. (2014). Serum miR-206 and other muscle-specific microRNAs as non-invasive biomarkers for Duchenne muscular dystrophy. Journal of Neurochemistry, 129(5), 877–883.

Article  CAS  PubMed  Google Scholar 

Huang, W. (2017). MicroRNAs: Biomarkers, diagnostics, and therapeutics. Methods in Molecular Biology, 1617, 57–67.

Article  CAS  PubMed  Google Scholar 

Iyadurai, S. J., & Kissel, J. T. (2016). The limb-girdle muscular dystrophies and the dystrophinopathies. CONTINUUM (Minneap Minn), 22(6, Muscle and Neuromuscular Junction Disorders), 1954–1977.

Kim, S. Y., et al. (2018). Collagen VI-related myopathy: Expanding the clinical and genetic spectrum. Muscle and Nerve, 58(3), 381–388.

Article  CAS  PubMed  Google Scholar 

Kolb, S. J., & Kissel, J. T. (2015). Spinal muscular atrophy. Neurologic Clinics, 33(4), 831–846.

Article  PubMed  PubMed Central  Google Scholar 

Koutsoulidou, A., et al. (2022). Serum miRNAs as biomarkers for the rare types of muscular dystrophy. Neuromuscular Disorders, 32(4), 332–346.

Article  PubMed  Google Scholar 

Li, X., et al. (2014). Circulating muscle-specific miRNAs in Duchenne muscular dystrophy patients. Molecular Therapy: Nucleic Acids, 3(7), e177.

CAS  PubMed  PubMed Central  Google Scholar 

Lidov, H. G. (2000). The molecular neuropathology of the muscular dystrophies: A review and update. Journal of Neuropathology and Experimental Neurology, 59(12), 1019–1030.

Article  CAS  PubMed  Google Scholar 

Matsuzaka, Y., et al. (2014). Three novel serum biomarkers, miR-1, miR-133a, and miR-206 for Limb-girdle muscular dystrophy, Facioscapulohumeral muscular dystrophy, and Becker muscular dystrophy. Environmental Health and Preventive Medicine, 19(6), 452–458.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McNally, E. M., & Pytel, P. (2007). Muscle diseases: The muscular dystrophies. Annual Review of Pathology: Mechanisms of Disease, 2, 87–109.

Article  CAS  Google Scholar 

Meng, Q., & Lan, D. (2019). A review on muscle-specific microRNAs as the biomarker for Duchenne muscular dystrophy. Zhongguo Dang Dai Er Ke Za Zhi, 21(11), 1148–1152.

PubMed  Google Scholar 

Mousa, N. O., et al. (2020). Circulating MicroRNAs in Duchenne muscular dystrophy. Clinical Neurology and Neurosurgery, 189, 105634.

Article  PubMed  Google Scholar 

Nowak, K. J., & Davies, K. E. (2004). Duchenne muscular dystrophy and dystrophin: Pathogenesis and opportunities for treatment. EMBO Reports, 5(9), 872–876.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perbellini, R., et al. (2011). Dysregulation and cellular mislocalization of specific miRNAs in myotonic dystrophy type 1. Neuromuscular Disorders, 21(2), 81–88.

Article  PubMed  Google Scholar 

Pogoryelova, O., et al. (2018). GNE myopathy: From clinics and genetics to pathology and research strategies. Orphanet Journal of Rare Diseases, 13(1), 70.

Article  PubMed  PubMed Central  Google Scholar 

Ravenscroft, G., Bryson-Richardson, R. J., Nowak, K. J., & Laing, N. G. (2018). Recent advances in understanding congenital myopathies. F1000Research, 7, 1971.

Article  Google Scholar 

Ridler, C. (2018). MicroRNA from dying neurons triggers astrocytosis in ALS. Nature Reviews: Neurology, 14(10), 572.

PubMed  Google Scholar 

Rizzuti, M., et al. (2018). MicroRNA expression analysis identifies a subset of downregulated miRNAs in ALS motor neuron progenitors. Science and Reports, 8(1), 10105.

Article  Google Scholar 

Rybalka, E., et al. (2014). Defects in mitochondrial ATP synthesis in dystrophin-deficient mdx skeletal muscles may be caused by complex I insufficiency. PLoS ONE, 9(12), e115763.

Article  PubMed  PubMed Central  Google Scholar 

Shyu, K. G., et al. (2015). MicroRNA-208a increases myocardial endoglin expression and myocardial fibrosis in acute myocardial infarction. Canadian Journal of Cardiology, 31(5), 679–690.

Article  PubMed  Google Scholar 

Simone, C., et al. (2016). Is spinal muscular atrophy a disease of the motor neurons only: Pathogenesis and therapeutic implications? Cellular and Molecular Life Sciences, 73(5), 1003–1020.

Article  CAS  PubMed  Google Scholar 

Sjogren, R. J. O., Lindgren Niss, M. H. L., & Krook, A. (2017). Skeletal muscle microRNAs: Roles in differentiation, disease and exercise. In B. Spiegelman (Ed.), Hormones metabolism and the benefits of exercise (pp. 67–81). Cham: Springer.

Chapter  Google Scholar 

Splinter, K., et al. (2018). Effect of genetic diagnosis on patients with previously undiagnosed disease. New England Journal of Medicine, 379(22), 2131–2139.

Article  CAS  PubMed  Google Scholar 

Sylvius, N., et al. (2011). MicroRNA expression profiling in patients with lamin A/C-associated muscular dystrophy. The FASEB Journal, 25(11), 3966–3978.

Article  CAS  PubMed  Google Scholar 

Valsecchi, V., et al. (2020). miR-206 reduces the severity of motor neuron degeneration in the facial nuclei of the brainstem in a mouse model of SMA. Molecular Therapy, 28, 1154–1166.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, L., et al. (2018). The clinical spectrum and g

留言 (0)

沒有登入
gif