Integrated proteome and malonylome analyses reveal the potential meaning of TLN1 and ACTB in end-stage renal disease

Murton M, Goff-Leggett D, Bobrowska A, Garcia Sanchez JJ, James G, Wittbrodt E, et al. Burden of Chronic Kidney Disease by KDIGO Categories of Glomerular Filtration Rate and Albuminuria: A Systematic Review. Adv Ther. 2021;38(1):180–200.

Article  PubMed  Google Scholar 

Lv JC, Zhang LX. Prevalence and Disease Burden of Chronic Kidney Disease. Adv Exp Med Biol. 2019;1165:3–15.

Article  CAS  PubMed  Google Scholar 

Global. regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395(10225):709–33.

Article  Google Scholar 

Bailie GR, Uhlig K, Levey AS. Clinical practice guidelines in nephrology: evaluation, classification, and stratification of chronic kidney disease. Pharmacotherapy. 2005;25(4):491–502.

Article  PubMed  Google Scholar 

Ammirati AL. Chronic Kidney Disease. Rev Assoc Med Bras (1992). 2020;66(Suppl 1):s03-s9.

Article  Google Scholar 

Gäckler A, Rohn H, Lisman T, Benkö T, Witzke O, Kribben A, et al. Evaluation of hemostasis in patients with end-stage renal disease. PLoS One. 2019;14(2):e0212237.

Article  PubMed  PubMed Central  Google Scholar 

Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–305.

Article  CAS  PubMed  Google Scholar 

Iwagami M, Caplin B, Smeeth L, Tomlinson LA, Nitsch D. Chronic kidney disease and cause-specific hospitalisation: a matched cohort study using primary and secondary care patient data. Br J Gen Pract. 2018;68(673):e512–23.

Article  PubMed  PubMed Central  Google Scholar 

K/DOQI clinical practice guidelines for chronic kidney disease. evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1-266.

Google Scholar 

GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211-59.

Saran R, Robinson B, Abbott KC, Agodoa LYC, Bhave N, Bragg-Gresham J, et al. US Renal Data System 2017 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis. 2018;71(3 Suppl 1):A7.

Article  PubMed  PubMed Central  Google Scholar 

Silverstein DM. Inflammation in chronic kidney disease: role in the progression of renal and cardiovascular disease. Pediatr Nephrol. 2009;24(8):1445–52.

Article  PubMed  Google Scholar 

Mg B. Immune cell dysfunction and inflammation in end-stage renal disease. Nat Rev Nephrol. 2013;9(5):255–65.

Article  Google Scholar 

Kaw D, Malhotra D. Platelet dysfunction and end-stage renal disease. Semin Dial. 2006;19(4):317–22.

Article  PubMed  Google Scholar 

Lu HY, Liao KM. Increased risk of deep vein thrombosis in end-stage renal disease patients. BMC Nephrol. 2018;19(1):204.

Article  PubMed  PubMed Central  Google Scholar 

Pavlou EG, Georgatzakou HT, Fortis SP, Tsante KA, Tsantes AG, Nomikou EG, et al. Coagulation Abnormalities in Renal Pathology of Chronic Kidney Disease: The Interplay between Blood Cells and Soluble Factors. Biomolecules. 2021;11(9):1309. https://doi.org/10.3390/biom11091309.

Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene. 2005;363:15–23.

Article  CAS  PubMed  Google Scholar 

Huang H, Lin S, Garcia BA, Zhao Y. Quantitative proteomic analysis of histone modifications. Chem Rev. 2015;115(6):2376–418.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gajjala PR, Fliser D, Speer T, Jankowski V, Jankowski J. Emerging role of post-translational modifications in chronic kidney disease and cardiovascular disease. Nephrol Dial Transplant. 2015;30(11):1814–24.

Article  CAS  PubMed  Google Scholar 

Fontecha-Barriuso M, Martin-Sanchez D, Ruiz-Andres O, Poveda J, Sanchez-Niño MD, Valiño-Rivas L, et al. Targeting epigenetic DNA and histone modifications to treat kidney disease. Nephrol Dial Transplant. 2018;33(11):1875–86.

Article  CAS  PubMed  Google Scholar 

Huang S, Zheng F, Lin H, Zhou X, Xu H, Zhang C, et al. Quantitative proteomics analysis of lysine 2-hydroxyisobutyrylation in IgA nephropathy. Clin Proteomics. 2021;18(1):7.

Article  PubMed  PubMed Central  Google Scholar 

Martinez-Moreno JM, Fontecha-Barriuso M, Martín-Sánchez D, Sánchez-Niño MD, Ruiz-Ortega M, Sanz AB, et al. The Contribution of Histone Crotonylation to Tissue Health and Disease: Focus on Kidney Health. Front Pharmacol. 2020;11:393.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen W, Tang D, Xu Y, Zou Y, Sui W, Dai Y, et al. Comprehensive analysis of lysine crotonylation in proteome of maintenance hemodialysis patients. Medicine (Baltimore). 2018;97(37):e12035.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Li C, Sun G. Histone Acetylation and Its Modifiers in the Pathogenesis of Diabetic Nephropathy. J Diabetes Res. 2016;2016:4065382.

Article  PubMed  PubMed Central  Google Scholar 

Reddy MA, Natarajan R. Recent developments in epigenetics of acute and chronic kidney diseases. Kidney Int. 2015;88(2):250–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics. 2011;10(12):M111.012658.

Article  PubMed  PubMed Central  Google Scholar 

Nishida Y, Rardin MJ, Carrico C, He W, Sahu AK, Gut P, et al. SIRT5 Regulates both Cytosolic and Mitochondrial Protein Malonylation with Glycolysis as a Major Target. Mol Cell. 2015;59(2):321–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du Y, Cai T, Li T, Xue P, Zhou B, He X, et al. Lysine malonylation is elevated in type 2 diabetic mouse models and enriched in metabolic associated proteins. Mol Cell Proteomics. 2015;14(1):227–36.

Article  CAS  PubMed  Google Scholar 

Galván-Peña S, Carroll RG, Newman C, Hinchy EC, Palsson-Mcdermott E, Robinson EK, et al. Malonylation of GAPDH is an inflammatory signal in macrophages. Nat Commun. 2019;10(1):338. https://doi.org/10.1038/s41467-018-08187-6.

Stevens PE, Levin A. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158(11):825–30.

Article  PubMed  Google Scholar 

Jacek RW, Alexandre Z, Nagarjuna N, Matthias M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–62.

Article  Google Scholar 

Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol Biol Evol. 2021;38(12):5825–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29(1):28–35.

Article  CAS  PubMed  Google Scholar 

Cheng A, Grant CE, Noble WS, Bailey TL. MoMo: discovery of statistically significant post-translational modification motifs. Bioinformatics. 2019;35(16):2774–82.

Article  CAS  PubMed  Google Scholar 

Divers J, Freedman BI. Susceptibility genes in common complex kidney disease. Curr Opin Nephrol Hypertens. 2010;19(1):79–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cooke JN, Bostrom MA, Hicks PJ, Ng MC, Hellwege JN, Comeau ME, et al. Polymorphisms in MYH9 are associated with diabetic nephropathy in European Americans. Nephrol Dial Transplant. 2012;27(4):1505–11.

Article  CAS  PubMed  Google Scholar 

Kao WH, Klag MJ, Meoni LA, Reich D, Berthier-Schaad Y, Li M, et al. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat Genet. 2008;40(10):1185–92.

Article  CAS  PubMed  Google Scholar 

Taghizade Mortezaee F, Esmaeli B, Badalzadeh M, Ghadami M, Fazlollahi MR, Alizade Z, et al. Investigation of ITGB2 gene in 12 new cases of leukocyte adhesion deficiency-type I revealed four novel mutations from Iran. Arch Iran Med. 2015;18(11):760–4.

PubMed  Google Scholar 

Wu JJ, Cantor A, Moscinski LC. beta2 Integrins are characteristically absent in acute promyelocytic leukemia and rapidly upregulated in vivo upon differentiation with all-trans retinoic acid. Leuk Res. 2007;31(1):49–57.

Article  CAS  PubMed  Google Scholar 

Andrew DP, Spellberg JP, Takimoto H, Schmits R, Mak TW, Zukowski MM. Transendothelial migration and trafficking of leukocytes in LFA-1-deficient mice. Eur J Immunol. 1998;28(6):1959–69.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif