CD137L Inhibition Ameliorates Hippocampal Neuroinflammation and Behavioral Deficits in a Mouse Model of Sepsis-Associated Encephalopathy

Anderson, S. T., Commins, S., Moynagh, P. N., & Coogan, A. N. (2015). Lipopolysaccharide-induced sepsis induces long-lasting affective changes in the mouse. Brain, Behavior, and Immunity, 43, 98–109. https://doi.org/10.1016/j.bbi.2014.07.007

Article  CAS  PubMed  Google Scholar 

Bruck, E., Schandl, A., Bottai, M., & Sackey, P. (2018). The impact of sepsis, delirium, and psychological distress on self-rated cognitive function in ICU survivors-a prospective cohort study. Journal of Intensive Care, 6, 2. https://doi.org/10.1186/s40560-017-0272-6

Article  PubMed  PubMed Central  Google Scholar 

Calsavara, A. J. C., Costa, P. A., Nobre, V., & Teixeira, A. L. (2018). Factors associated with short and long term cognitive changes in patients with sepsis. Scientific Reports, 8(1), 4509. https://doi.org/10.1038/s41598-018-22754-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao, P., Chen, C., Liu, A., Shan, Q., Zhu, X., Jia, C., Peng, X., Zhang, M., Farzinpour, Z., Zhou, W., & Wang, H. (2021). Early-life inflammation promotes depressive symptoms in adolescence via microglial engulfment of dendritic spines. Neuron, 109(16), 2573-2589e2579. https://doi.org/10.1016/j.neuron.2021.06.012

Article  CAS  PubMed  Google Scholar 

Cherry, J. D., Olschowka, J. A., & O’Banion, M. K. (2014). Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. Journal of Neuroinflammation, 11, 98. https://doi.org/10.1186/1742-2094-11-98

Article  CAS  PubMed  PubMed Central  Google Scholar 

Colton, C. A. (2009). Heterogeneity of microglial activation in the innate immune response in the brain. Journal of Neuroimmune Pharmacology: The Official Journal of the Society on Neuroimmune Pharmacology, 4(4), 399–418. https://doi.org/10.1007/s11481-009-9164-4

Article  PubMed  Google Scholar 

Croft, M. (2009). The role of TNF superfamily members in T-cell function and diseases. Nature Reviews Immunology, 9(4), 271–285. https://doi.org/10.1038/nri2526

Article  CAS  PubMed  PubMed Central  Google Scholar 

Etxeberria, I., Glez-Vaz, J., Teijeira, A., & Melero, I. (2020). New emerging targets in cancer immunotherapy: CD137/4-1BB costimulatory axis. ESMO Open, 4(Suppl 3), e000733. https://doi.org/10.1136/esmoopen-2020-000733

Article  PubMed  PubMed Central  Google Scholar 

Fleischmann-Struzek, C., Mellhammar, L., Rose, N., Cassini, A., Rudd, K. E., Schlattmann, P., Allegranzi, B., & Reinhart, K. (2020). Incidence and mortality of hospital-and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis. Intensive Care Medicine, 46(8), 1552–1562. https://doi.org/10.1007/s00134-020-06151-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gofton, T. E., & Young, G. B. (2012). Sepsis-associated encephalopathy. Nature Reviews Neurology, 8(10), 557–566. https://doi.org/10.1038/nrneurol.2012.183

Article  CAS  PubMed  Google Scholar 

Han, Z., Zhao, H., Tao, Z., Wang, R., Fan, Z., Luo, Y., Luo, Y., & Ji, X. (2018). TOPK promotes microglia/macrophage polarization towards M2 phenotype via inhibition of HDAC1 and HDAC2 activity after transient cerebral ischemia. Aging and Disease, 9(2), 235–248. https://doi.org/10.14336/AD.2017.0328

Article  PubMed  PubMed Central  Google Scholar 

Helbing, D. L., Bohm, L., & Witte, O. W. (2018). Sepsis-associated encephalopathy. Cmaj, 190(36), E1083. https://doi.org/10.1503/cmaj.180454

Article  PubMed  PubMed Central  Google Scholar 

Hsiao, K. K., Borchelt, D. R., Olson, K., Johannsdottir, R., Kitt, C., Yunis, W., Xu, S., Eckman, C., Younkin, S., Price, D., & Iadecola, C. (1995). Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron, 15(5), 1203–1218. https://doi.org/10.1016/0896-6273(95)90107-8

Article  CAS  PubMed  Google Scholar 

Jin, X., & Yamashita, T. (2016). Microglia in central nervous system repair after injury. The journal of Biochemistry, 159(5), 491–496. https://doi.org/10.1093/jb/mvw009

Article  CAS  PubMed  Google Scholar 

Kang, Y. J., Kim, S. O., Shimada, S., Otsuka, M., Seit-Nebi, A., Kwon, B. S., Watts, T. H., & Han, J. (2007). Cell surface 4-1BBL mediates sequential signaling pathways “downstream” of TLR and is required for sustained TNF production in macrophages. Nature Immunology, 8(6), 601–609. https://doi.org/10.1038/ni1471

Article  CAS  PubMed  Google Scholar 

Kim, C. Y., Lee, G. Y., Park, G. H., Lee, J., & Jang, J. H. (2014). Protective Effect of arabinoxylan against scopolamine-induced learning and memory impairment. Biomolecules & Therapeutics (Seoul), 22(5), 467–473. https://doi.org/10.4062/biomolther.2014.063

Article  CAS  Google Scholar 

Kim, J. D., Lee, E. A., Quang, N. N., Cho, H. R., & Kwon, B. (2011). Recombinant TAT-CD137 ligand cytoplasmic domain fusion protein induces the production of IL-6 and TNF-alpha in peritoneal macrophages. Immune Network, 11(4), 216–222. https://doi.org/10.4110/in.2011.11.4.216

Article  PubMed  PubMed Central  Google Scholar 

Lemstra, A. W., & Groen in’t, Woud, J. C., Hoozemans, J. J., van Haastert, E. S., Rozemuller, A. J., Eikelenboom, P. (2007). Microglia activation in sepsis: a case-control study. Journal of Neuroinflammation, 4, 4. https://doi.org/10.1186/1742-2094-4-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Y., Ji, M., & Yang, J. (2022). Current understanding of long-term cognitive impairment after sepsis. Frontiers in Immunology, 13, 855006. https://doi.org/10.3389/fimmu.2022.855006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Y., Yin, L., Fan, Z., Su, B., Chen, Y., Ma, Y., Zhong, Y., Hou, W., Fang, Z., & Zhang, X. (2020). Microglia: a potential therapeutic target for sepsis-associated encephalopathy and sepsis-associated chronic pain. Frontiers in Pharmacology, 11, 600421. https://doi.org/10.3389/fphar.2020.600421

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma, J., Bang, B. R., Lu, J., Eun, S. Y., Otsuka, M., Croft, M., Tobias, P., Han, J., Takeuchi, O., Akira, S., & Karin, M. (2013). The TNF family member 4–1BBL sustains inflammation by interacting with TLR signaling components during late-phase activation. Science Signaling, 6(295), ra87. https://doi.org/10.1126/scisignal.2004431

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mak, A., Dharmadhikari, B., Kow, N. Y., Thamboo, T. P., Tang, Q., Wong, L. W., Sajikumar, S., Wong, H. Y., & Schwarz, H. (2019). Deletion of CD137 ligand exacerbates renal and cutaneous but alleviates cerebral manifestations in lupus. Frontiers in Immunology, 10, 1411. https://doi.org/10.3389/fimmu.2019.01411

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manabe, T., & Heneka, M. T. (2022). Cerebral dysfunctions caused by sepsis during ageing. Nature Reviews Immunology, 22(7), 444–458. https://doi.org/10.1038/s41577-021-00643-7

Article  CAS  PubMed  Google Scholar 

Mbanwi, A. N., Lin, G. H. Y., Wang, K. C., & Watts, T. H. (2017). Constitutive interaction between 4-1BB and 4-1BBL on murine LPS-activated bone marrow dendritic cells masks detection of 4-1BBL by TKS-1 but not 19H3 antibody. Journal of Immunological Methods, 450, 81–89. https://doi.org/10.1016/j.jim.2017.08.001

Article  CAS  PubMed  Google Scholar 

Nguyen, Q. T., Ju, S. A., Park, S. M., Lee, S. C., Yagita, H., Lee, I. H., & Kim, B. S. (2009). Blockade of CD137 signaling counteracts polymicrobial sepsis induced by cecal ligation and puncture. Infection and Immunity, 77(9), 3932–3938. https://doi.org/10.1128/IAI.00407-09

Article  CAS  PubMed  PubMed Central  Google Scholar 

Osterhout, J. A., Kapoor, V., Eichhorn, S. W., Vaughn, E., Moore, J. D., Liu, D., Lee, D., DeNardo, L. A., Luo, L., Zhuang, X., & Dulac, C. (2022). A preoptic neuronal population controls fever and appetite during sickness. Nature, 606(7916), 937–944. https://doi.org/10.1038/s41586-022-04793-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren, C., Yao, R. Q., Zhang, H., Feng, Y. W., & Yao, Y. M. (2020). Sepsis-associated encephalopathy: a vicious cycle of immunosuppression. Journal of Neuroinflammation, 17(1), 14. https://doi.org/10.1186/s12974-020-1701-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwalm, M. T., Pasquali, M., Miguel, S. P., Dos Santos, J. P. A., Vuolo, F., Comim, C. M., Petronilho, F., Quevedo, J., Gelain, D. P., Moreira, J. C. F., & Ritter, C. (2014). Acute brain inflammation and oxidative damage are related to long-term cognitive deficits and markers of neurodegeneration in sepsis-survivor rats. Molecular Neurobiology, 49, 380–385. https://doi.org/10.1007/s12035-013-8526-3

Article  CAS  PubMed  Google Scholar 

Semmler, A., Widmann, C. N., Okulla, T., Urbach, H., Kaiser, M., Widman, G., Mormann, F., Weide, J., Fliessbach, K., Hoeft, A., Jessen, F., Putensen, C., & Heneka, M. T. (2013). Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. Journal of Neurology, Neurosurgery and Psychiatry, 84(1), 62–69. https://doi.org/10.1136/jnnp-2012-302883

Article  PubMed  Google Scholar 

Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard, G. R., Chiche, J.-D., Coopersmith, C. M., Hotchkiss, R. S., Levy, M. M., Marshall, J. C., Martin, G. S., Opal, S. M., Rubenfeld, G. D., Poll, T., Vincent, J.-L., & Angus, D. C. (2016). The third international consensus definitions for sepsis and septic shock (sepsis-3). Journal of The American Medical Association, 315(8), 801–810. https://doi.org/10.1001/jama.2016.0287

Article  CAS  PubMed 

留言 (0)

沒有登入
gif