Fatty Acids and their Proteins in Adipose Tissue Inflammation

Ye, R. Z., Richard, G., Gevry, N., Tchernof, A. & Carpentier, A. C. (2022). Fat cell size: measurement methods, pathophysiological origins, and relationships with metabolic dysregulations. Endocrine Reviews, 43, 35–60. https://doi.org/10.1210/endrev/bnab018.

Article  PubMed  Google Scholar 

Park, J., Kim, M., Sun, K., An, Y. A., Gu, X., & Scherer, P. E. (2017). VEGF-A-expressing adipose tissue shows rapid beiging and enhanced survival after transplantation and confers IL-4-independent metabolic improvements. Diabetes, 66, 1479–1490. https://doi.org/10.2337/db16-1081.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosenwald, M., & Wolfrum, C. (2014). The origin and definition of brite versus white and classical brown adipocytes. Adipocyte, 3, 4–9. https://doi.org/10.4161/adip.26232.

Article  CAS  PubMed  Google Scholar 

Arner, P.(1995). Differences in lipolysis between human subcutaneous and omental adipose tissues. Annals of Medicine, 27, 435–438. https://doi.org/10.3109/07853899709002451.

Article  CAS  PubMed  Google Scholar 

Zingaretti, M. C., Crosta, F., Vitali, A., Guerrieri, M., Frontini, A., Cannon, B., Nedergaard, J. & Cinti, S. (2009). The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. The FASEB Journal, 23, 3113–3120. https://doi.org/10.1096/fj.09-133546.

Article  CAS  PubMed  Google Scholar 

Townsend, K., & Tseng, Y. H. (2012). Brown adipose tissue: Recent insights into development, metabolic function and therapeutic potential. Adipocyte, 1, 13–24. https://doi.org/10.4161/adip.18951.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ikeda, K., Maretich, P., & Kajimura, S. (2018). The common and distinct features of brown and beige adipocytes. Trends in Endocrinology & Metabolism, 29, 191–200. https://doi.org/10.1016/j.tem.2018.01.001.

Article  CAS  Google Scholar 

Lebeck, J.(2014). Metabolic impact of the glycerol channels AQP7 and AQP9 in adipose tissue and liver. Journal of Molecular Endocrinology, 52, R165–R178. https://doi.org/10.1530/JME-13-0268.

Article  CAS  PubMed  Google Scholar 

Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Nature, 444, 860–867. https://doi.org/10.1038/nature05485.

Article  CAS  PubMed  Google Scholar 

Cancello, R., Tordjman, J., Poitou, C., Guilhem, G., Bouillot, J. L., Hugol, D., Coussieu, C., Basdevant, A., Bar Hen, A., & Bedossa, P., et al. (2006). Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes, 55, 1554–1561. https://doi.org/10.2337/db06-0133.

Article  CAS  PubMed  Google Scholar 

Reddy, P., Lent-Schochet, D., Ramakrishnan, N., McLaughlin, M. & Jialal, I. (2019). Metabolic syndrome is an inflammatory disorder: A conspiracy between adipose tissue and phagocytes. Clinica Chimica Acta, 496, 35–44. https://doi.org/10.1016/j.cca.2019.06.019.

Article  CAS  Google Scholar 

Lambert, C., Cubedo, J., Padro, T. Sanchez-Hernandez, J. Antonijoan, R. M. Perez, A. Badimon, L. (2017). Phytosterols and Omega 3 Supplementation Exert Novel Regulatory Effects on Metabolic and Inflammatory Pathways: A Proteomic Study. Nutrients, 9 https://doi.org/10.3390/nu9060599.

Gilroy, D. W. & Bishop-Bailey, D. (2019). Lipid mediators in immune regulation and resolution. British Journal of Pharmacology, 176, 1009–1023. https://doi.org/10.1111/bph.14587.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Serhan, C. N., Chiang, N., & Dalli, J. (2018). New pro-resolving n-3 mediators bridge resolution of infectious inflammation to tissue regeneration. Molecular Aspects of Medicine, 64, 1–17. https://doi.org/10.1016/j.mam.2017.08.002.

Article  CAS  PubMed  Google Scholar 

Aursnes, M., Tungen, J. E., Vik, A., Colas, R., Cheng, C. Y., Dalli, J., Serhan, C. N., & Hansen, T. V. (2014). Total synthesis of the lipid mediator PD1n-3 DPA: configurational assignments and anti-inflammatory and pro-resolving actions. Journal of Natural Products, 77, 910–916. https://doi.org/10.1021/np4009865.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, L. E., Samocha-Bonet, D., Whitworth, P. T., Fazakerley, D. J., Turner, N., Biden, T. J., James, D. E. & Cantley, J. (2014). Identification of fatty acid binding protein 4 as an adipokine that regulates insulin secretion during obesity. Molecular Metabolism, 3, 465–473. https://doi.org/10.1016/j.molmet.2014.02.005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Konigorski, S., Janke, J., Drogan, D., Bergmann, M. M., Hierholzer, J., Kaaks, R., Boeing, H. & Pischon, T. (2019). Prediction of circulating adipokine levels based on body fat compartments and adipose tissue gene expression. Obesity Facts, 12, 590–605. https://doi.org/10.1159/000502117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jung, U. J., & Choi, M. S. (2014). Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. International Journal of Molecular Sciences, 15, 6184–6223. https://doi.org/10.3390/ijms15046184.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmadian, M., Duncan, R. E., Jaworski, K., Sarkadi-Nagy, E., & Sul, H. S. (2007). Triacylglycerol metabolism in adipose tissue. Future Lipidology, 2, 229–237. https://doi.org/10.2217/17460875.2.2.229.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cignarelli, A., Genchi, V. A., Perrini, S., Natalicchio, A., Laviola, L., Giorgino, F. (2019). Insulin and insulin receptors in adipose tissue development. International Journal of Molecular Sciences, 20 https://doi.org/10.3390/ijms20030759.

Zhang, D.; Wei, Y., Huang, Q., Chen, Y., Zeng, K., Yang, W., Chen, J., Chen, J. (2022). Important hormones regulating lipid metabolism. Molecules, 27 https://doi.org/10.3390/molecules27207052.

Saponaro, C., Gaggini, M., Carli, F., & Gastaldelli, A. (2015). The subtle balance between lipolysis and lipogenesis: a critical point in metabolic homeostasis. Nutrients, 7, 9453–9474. https://doi.org/10.3390/nu7115475.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fujimoto, T., Parton, R. G. (2011). Not just fat: the structure and function of the lipid droplet. Cold Spring Harbor Perspectives in Biology, 3 https://doi.org/10.1101/cshperspect.a004838.

Duncan, R. E., Ahmadian, M., Jaworski, K., Sarkadi-Nagy, E., & Sul, H. S. (2007). Regulation of lipolysis in adipocytes. Annual Review of Nutrition, 27, 79–101

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ryden, M., & Arner, P. (2017). Subcutaneous adipocyte lipolysis contributes to circulating lipid levels. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 1782–1787

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bickerton, A. S., Roberts, R., Fielding, B. A., Hodson, L., Blaak, E. E., Wagenmakers, A. J., Gilbert, M., Karpe, F., & Frayn, K. N. (2007). Preferential uptake of dietary Fatty acids in adipose tissue and muscle in the postprandial period. Diabetes, 56, 168–176. https://doi.org/10.2337/db06-0822.

Article  CAS  PubMed  Google Scholar 

Nielsen, T. S., Jessen, N., Jorgensen, J. O., Moller, N., & Lund, S. (2014). Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. Journal of Molecular Endocrinology, 52, R199–R222. https://doi.org/10.1530/JME-13-0277.

Article  CAS  PubMed  Google Scholar 

Young, S. G., & Zechner, R. (2013). Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes & Development, 27, 459–484. https://doi.org/10.1101/gad.209296.112.

Article  CAS  Google Scholar 

Smith, U., & Kahn, B. B. (2016). Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. Journal of Internal Medicine, 280, 465–475. https://doi.org/10.1111/joim.12540.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pico, C., Palou, M., Pomar, C. A., Rodriguez, A. M., & Palou, A. (2022). Leptin as a key regulator of the adipose organ. Reviews in Endocrine & Metabolic Disorders, 23, 13–30. https://doi.org/10.1007/s11154-021-09687-5.

Article  CAS  Google Scholar 

Khoramipour, K., Chamari, K., Hekmatikar, A. A., Ziyaiyan, A., Taherkhani, S., Elguindy, N. M., Bragazzi, N. L. (2021). Adiponectin: structure, physiological functions, role in diseases, and effects of nutrition. Nutrients, 13 https://doi.org/10.3390/nu13041180.

Hunter, K. A., Crosbie, L. C., Horgan, G. W., Miller, G. J., & Dutta-Roy, A. K. (2001). Effect of diets rich in oleic acid, stearic acid and linoleic acid on postprandial haemostatic factors in young healthy men. British Journal of Nutrition, 86, 207–215.

CAS  PubMed  Google Scholar 

Choe, S. S., Huh, J. Y., Hwang, I. J., Kim, J. I. & Kim, J. B. (2016). Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Frontiers in Endocrinology, 7, 30. https://doi.org/10.3389/fendo.2016.00030.

Article  PubMed  PubMed Central  Google Scholar 

Dutta-Roy, A. K. (2000). Cellular uptake of long-chain fatty acids: role of membrane-associated fatty-acid-binding/transport proteins. Cellular and Molecular Life Sciences, 57, 1360–1372. https://doi.org/10.1007/pl00000621.

Article  CAS  PubMed  Google Scholar 

Duttaroy, A. K. (2006). Fatty acid-activated nuclear transcription factors and their roles in human placenta. European Journal of Lipid Science and Technology, 108, 70–83. https://doi.org/10.1002/ejlt.200500272.

Article  CAS  Google Scholar 

Duttaroy, A. K., & Basak, S. (2021). Maternal fatty acid metabolism in pregnancy and its consequences in the feto-placental development. Frontiers in Physiology, 12, 787848. https://doi.org/10.3389/fphys.2021.787848.

Article 

留言 (0)

沒有登入
gif