Autophagy in Acute Lung Injury

Li, Z., Zheng, B., Liu, C., Zhao, X., Zhao, Y., & Wang, X., et al. (2023). BMSC-derived exosomes alleviate sepsis-associated acute respiratory distress syndrome by activating the Nrf2 pathway to reverse mitochondrial dysfunction. Stem Cells International, 2023, 7072700 https://doi.org/10.1155/2023/7072700.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Xu, X., Xu, X., Zhong, K., Wu, Z., Wang, C., & Ding, Z., et al. (2024). Salecan ameliorates LPS-induced acute lung injury through regulating Keap1-Nrf2/HO-1 pathway in mice. International Immunopharmacology, 128, 111512 https://doi.org/10.1016/j.intimp.2024.111512.

Article  PubMed  CAS  Google Scholar 

Mai, J., He, Q., Liu, Y., & Hou, Y. (2023). Hyperoside attenuates sepsis-induced acute lung injury (ALI) through autophagy regulation and inflammation suppression. Mediators of Inflammation, 2023, 1257615 https://doi.org/10.1155/2023/1257615.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Van den Broek, B., Pintelon, I., Hamad, I., Kessels, S., Haidar, M., & Hellings, N., et al. (2020). Microglial derived extracellular vesicles activate autophagy and mediate multi-target signaling to maintain cellular homeostasis. Journal of Extracellular Vesicles, 10, 12022 https://doi.org/10.1002/jev2.12022.

Article  CAS  Google Scholar 

Shariq, M., Quadir, N., Alam, A., Zarin, S., Sheikh, J. A., & Sharma, N., et al. (2023). The exploitation of host autophagy and ubiquitin machinery by Mycobacterium tuberculosis in shaping immune responses and host defense during infection. Autophagy, 19, 3–23. https://doi.org/10.1080/15548627.2021.2021495.

Article  PubMed  CAS  Google Scholar 

Xiong, Q., & Eichinger, L. (2023). Model organisms to study autophagy. Cells, 12, 2212. https://doi.org/10.3390/cells12182212.

Zhang, S., Yang, G., Guan, W., Li, B., Feng, X., & Fan, H. (2021). Autophagy plays a protective role in sodium hydrosulfide-induced acute lung injury by attenuating oxidative stress and inflammation in rats. Chemical Research in Toxicology, 34, 857–864. https://doi.org/10.1021/acs.chemrestox.0c00493.

Article  PubMed  CAS  Google Scholar 

Van Noorden, R., & Ledford, H. (2016). Medicine Nobel for research on how cells ‘eat themselves. Nature, 538, 18–19. https://doi.org/10.1038/nature.2016.20721.

Article  PubMed  CAS  Google Scholar 

Ferdous, A., Battiprolu, P. K., Ni, Y. G., Rothermel, B. A., & Hill, J. A. (2010). FoxO, autophagy, and cardiac remodeling. Journal of Cardiovascular Translational Research, 3, 355–364. https://doi.org/10.1007/s12265-010-9200-z.

Article  PubMed  PubMed Central  Google Scholar 

Xie, M., Morales, C. R., Lavandero, S., & Hill, J. A. (2011). Tuning flux: autophagy as a target of heart disease therapy. Current Opinion in Cardiology, 26, 216–222. https://doi.org/10.1097/HCO.0b013e328345980a.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Qiu, P., Liu, Y., & Zhang, J. (2019). Review: the role and mechanisms of macrophage autophagy in sepsis. Inflammation, 42, 6–19. https://doi.org/10.1007/s10753-018-0890-8.

Article  PubMed  CAS  Google Scholar 

Wang, K., Chen, Y., Zhang, P., Lin, P., Xie, N., & Wu, M. (2019). Protective features of autophagy in pulmonary infection and inflammatory diseases. Cells, 8, 123. https://doi.org/10.3390/cells8020123.

Mizushima, N., & Levine, B. (2010). Autophagy in mammalian development and differentiation. Nature Cell Biology, 12, 823–830. https://doi.org/10.1038/ncb0910-823.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Painter, J. D., Galle-Treger, L., & Akbari, O. (2020). Role of autophagy in lung inflammation. Frontiers in Immunology, 11, 1337 https://doi.org/10.3389/fimmu.2020.01337.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mofarrahi, M., Sigala, I., Guo, Y., Godin, R., Davis, E. C., & Petrof, B., et al. (2012). Autophagy and skeletal muscles in sepsis. PloS One, 7, e47265 https://doi.org/10.1371/journal.pone.0047265.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hsiao, H. W., Tsai, K. L., Wang, L. F., Chen, Y. H., Chiang, P. C., & Chuang, S. M., et al. (2012). The decline of autophagy contributes to proximal tubular dysfunction during sepsis. Shock (Augusta, Ga), 37, 289–296. https://doi.org/10.1097/SHK.0b013e318240b52a.

Article  PubMed  CAS  Google Scholar 

Parzych, K. R., & Klionsky, D. J. (2014). An overview of autophagy: morphology, mechanism, and regulation. Antioxidants & Redox Signaling, 20, 460–473.

Article  CAS  Google Scholar 

Nakahira, K., Cloonan, S. M., Mizumura, K., Choi, A. M., & Ryter, S. W. (2014). Autophagy: a crucial moderator of redox balance, inflammation, and apoptosis in lung disease. Antioxidants & Redox Signaling, 20, 474–494.

Article  CAS  Google Scholar 

Li, X., He, S., & Ma, B. (2020). Autophagy and autophagy-related proteins in cancer. Molecular Cancer, 19, 12 https://doi.org/10.1186/s12943-020-1138-4.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Metur, S. P., & Klionsky, D. J. (2021). Autophagy under construction: insights from in vitro reconstitution of autophagosome nucleation. Autophagy, 17, 383–384. https://doi.org/10.1080/15548627.2020.1835231.

Article  PubMed  Google Scholar 

Landajuela, A., Hervás, J. H., Antón, Z., Montes, L. R., Gil, D., & Valle, M., et al. (2016). Lipid geometry and bilayer curvature modulate LC3/GABARAP-mediated model autophagosomal elongation. Biophysical Journal, 110, 411–422. https://doi.org/10.1016/j.bpj.2015.11.3524.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Schütter, M., Giavalisco, P., Brodesser, S., & Graef, M. (2020). Local fatty acid channeling into phospholipid synthesis drives phagophore expansion during autophagy. Cell, 180, 135–149. https://doi.org/10.1016/j.cell.2019.12.005.

Article  PubMed  CAS  Google Scholar 

Bansal, M., Moharir, S. C., & Swarup, G. (2018). Autophagy receptor optineurin promotes autophagosome formation by potentiating LC3-II production and phagophore maturation. Communicative & Integrative Biology, 11, 1–4. https://doi.org/10.1080/19420889.2018.1467189.

Article  CAS  Google Scholar 

Rao, L., & Eissa, N. T. (2020). Autophagy in pulmonary innate immunity. Journal of innate immunity, 12, 21–30. https://doi.org/10.1159/000497414.

Article  PubMed  CAS  Google Scholar 

Green, D. R., & Levine, B. (2014). To be or not to be? How selective autophagy and cell death govern cell fate. Cell, 157, 65–75. https://doi.org/10.1016/j.cell.2014.02.049.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Green, D. R. (2019). The coming decade of cell death research: five riddles. Cell, 177, 1094–1107. https://doi.org/10.1016/j.cell.2019.04.024.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Krysko, D. V., Vanden Berghe, T., D'herde, K., & Vandenabeele, P. (2008). Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods (San Diego, Calif), 44, 205–221. https://doi.org/10.1016/j.ymeth.2007.12.001.

Article  PubMed  CAS  Google Scholar 

Dutta, P., Courties, G., Wei, Y., Leuschner, F., Gorbatov, R., & Robbins, C. S., et al. (2012). Myocardial infarction accelerates atherosclerosis. Nature, 487, 325–329. https://doi.org/10.1038/nature11260.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tsuboyama, K., Koyama-Honda, I., Sakamaki, Y., Koike, M., Morishita, H., & Mizushima, N. (2016). The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science (New York, NY), 354, 1036–1041. https://doi.org/10.1126/science.aaf6136.

Article 

留言 (0)

沒有登入
gif