Flavonoids of Euphorbia hirta inhibit inflammatory mechanisms via Nrf2 and NF-κB pathways

Cho, Y. C., Park, J., & Cho, S. (2020). Anti-inflammatory and anti-oxidative effects of luteolin-7-O-glucuronide in LPS-stimulated murine macrophages through TAK1 inhibition and Nrf2 activation. International Journal of Molecular Sciences, 21(6), 2007. https://doi.org/10.3390/ijms21062007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cayona, R., & Creencia, E. (2021). Phytochemical mining of potential sars-cov-2 main protease inhibitors from blumea balsamifera (l.) dc. Philippine Journal of Science, 151, 235–261.

Article  Google Scholar 

Cayona, R., & Creencia, E. (2022). Phytochemicals of Euphorbia hirta L. and their inhibitory potential against SARS-CoV-2 main protease. Frontiers in Molecular Biosciences, 8, 801401.

Article  PubMed  PubMed Central  Google Scholar 

Das, K., Asdaq, S. M. B., Khan, M. S., Amrutha, S., Alamri, A., Alhomrani, M., Alsanie, W. F., Bhaskar, A., Chandana shree, G., & Harshitha, P. (2022). Phytochemical investigation and evaluation of in vitro anti-inflammatory activity of Euphorbia hirta ethanol leaf and root extracts: a comparative study. Journal of King Saud University – Science, 34(7), 102261.

Article  Google Scholar 

Dayrit, F., Guidote, A., Gloriani, N., Paz-Silava, S., Villaseñor, I., Macahig, R., Tan, M., Chua, J., & Sia, I. (2021). Philippine medicinal plants with potential immunomodulatory and anti-SARS-CoV-2 activities. Philippine Journal of Science, 150(5), 999–1015.

Ee, B., Tm, A., Jn, O., Oo, O., & Re, A. (2024). Acetate abates arsenic-induced male reproductive toxicity by suppressing HDAC and uric acid-driven oxido-inflammatory NFkB/iNOS/NO response in rats. Biological Trace Element Research, 202(6), 2672–2687.

Article  Google Scholar 

Cai, L., Hua, C., Geng, Y., Chen, Q., Niu, L., Tao, S., & Zhao, R. (2019). Chronic Dexamethasone exposure activates the TLR4-Mediated inflammation pathway and induces epithelial apoptosis in the goat colon. Biochemical and Biophysical Research Communications, 518(1), 7–13.

Article  CAS  PubMed  Google Scholar 

Zhang, H., Zhu, X., Huang, Q., Zhang, L., Liu, X., Liu, R., & Lu, Q. (2022). Antioxidant and anti-inflammatory activities ofrape bee pollen after fermentation and their correlation with chemical components by ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry-based untargeted metabolomics. Food Chemistry, 409, 135342.

Article  PubMed  Google Scholar 

Liu, L., Zhang, X., Xing, X., Mohammed, I., Xu, X., Jiang, Z., Wang, T., Huang, X., Wang, X., Zhang, L., & Sun, L. (2022). Triptolide induces liver injury by regulating macrophage recruitment and polarization via the Nrf2 signaling pathway. Oxidative Medicine and Cellular Longevity, 2022, 1492239.

PubMed  PubMed Central  Google Scholar 

Dehghan, R., Soheilifar, M. H., Azizi Jalilian, F., Najafi, R., & Amini, R. (2021). The potential anti-inflammatory effects of zerumbone in COVID-19 patients. Avicenna Journal of Medical Biotechnology, 13(4), 234–236.

PubMed  PubMed Central  Google Scholar 

Shams, A., Landry, K. B., Shams, F., Tariq, S., Azeem, A., Anjum, H., & Ijaz, B. (2022). Hepatoprotective and anti-inflammatory potential of crude methanolic extract of euphorbia pilulifera via nf-kb/nrf2/akt/tgf-β1 pathway. Pakistan BioMedical Journal, 2022, 162–167.

Article  Google Scholar 

Rezayian, M., & Zarinkamar, F. (2023). Nitric oxide, calmodulin and calcium protein kinase interactions in the response of Brassica napus to salinity stress. Plant Biology, 25(3), 411–419.

Article  CAS  PubMed  Google Scholar 

Robinson, N., & Ganesan, R. (2019). Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos. Redox Biology, 26, 101239.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sangiovanni, E., & Dell’Agli, M. (2020). Special issue: anti-inflammatory activity of plant polyphenols. Biomedicines, 8(3), 64.

Article  PubMed  PubMed Central  Google Scholar 

Ul Ferdous, M. R., Rahman, M., Rahman, M. A., Ahmed, A. I., Rana, M. J., Rahman, M. A., & Reza, H. (2017). Phytochemical Screening and Ex-vivo cardioprotective assay of Euphorbia hirta (L). Cellular & Molecular Medicine: Open Access. 03(01).

Song, Y., Zhu, L. & Zheng, X. (2024). β-carotene inhibits MAPKs signaling pathways on rat colonic epithelial cells to attenuate TNF-α-induced intestinal inflammation and injury. Cell Biochemistry and Biophysics, 82(1), 291–302.

Article  CAS  PubMed  Google Scholar 

Zhang, T., Wang, Y., Yao, W., Chen, Y., Zhang, D., Gao, Y., Jin, S., Li, L., Yang, S., & Wu, Y. (2022). Metformin antagonizes nickel-refining fumes-induced cell pyroptosis via Nrf2/GOLPH3 pathway in vitro and in vivo. Ecotoxicology and Environmental Safety, 247, 114233.

Article  CAS  PubMed  Google Scholar 

Pyne, S., Lee, S. C., Long, J., & Pyne, N. J. (2009). Role of sphingosine kinases and lipid phosphate phosphatases in regulat- ing spatial sphingosine 1-phosphate signalling in health and dis-ease. Cellular Signalling, 21(1), 14–21.

Article  CAS  PubMed  Google Scholar 

Albi, E., Alessenko, A., & Grösch, S. (2018). Sphingolipids in inflammation. Mediators of Inflammation, 2018, 7464702.

Article  PubMed  PubMed Central  Google Scholar 

Ma, F., Liu, F., Ding, L., You, M., Yue, H., Zhou, Y., & Hou, Y. (2017). Anti-inflammatory effects of curcumin are associated with down regulating microRNA-155 in LPS-treated macrophages and mice. Pharmaceutical Biology, 55(1), 1263–1273.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, S., Meng, L., Wei, P., Gu, G., & Duan, K. (2024). Sinensetin suppresses breast cancer cell progression via Wnt/β-catenin pathway inhibition. Translational Cancer Research, 13(1), 348–362.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laavola, M., Nieminen, R., Yam, M. F., Sadikun, A., Asmawi, M. Z., Basir, R., Welling, J., Vapaatalo, H., Korhonen, R., & Moi-lanen, E. (2012). Flavonoids eupatorin and sinensetin present in Orthosiphon stamineus leaves inhibit inflammatory gene expres- sion and STAT1 activation. Planta Medica, 78(8), 779–786.

Article  CAS  PubMed  Google Scholar 

Yang, D., Yang, R., Shen, J., Huang, L., Men, S., & Wang, T. (2022). Sinensetin attenuates oxygen-glucose deprivation/reper- fusion-induced neurotoxicity by MAPK pathway in human cerebral microvascular endothelial cells. Journal of Applied Toxicology, 42(4), 683–693.

Article  CAS  PubMed  Google Scholar 

Shen, K., Jia, Y., Wang, X., Zhang, J., Liu, K., Wang, J., Cai, W., Li, J., Li, S., Zhao, M., Wang, Y., & Hu, D. (2021). Exosomes from adipose-derived stem cells alleviate the inflammation and oxidative stress via regulating Nrf2/HO-1 axis in macrophages. Free Radical Biology and Medicine, 165, 54–66.

Article  CAS  PubMed  Google Scholar 

Byeon, S. E., Yi, Y. S., Oh, J., Yoo, B. C., Hong, S., & Cho, J. Y. (2012). The role of Src kinase in macrophage-mediated inflam- matory responses. Mediators of Inflammation, 2012, 512926.

Article  PubMed  PubMed Central  Google Scholar 

Okutani, D., Lodyga, M., Han, B., & Liu, M. (2006). Src protein tyrosine kinase family and acute inflammatory responses. The American Journal of Physiology-Lung Cellular and Molecular Physiology, 291(2), 31.

Article  Google Scholar 

Ren, Q., Guo, F., Tao, S., Huang, R., Ma, L., & Fu, P. (2020). Flavonoid fisetin alleviates kidney inflammation and apoptosis via inhibiting Src-mediated NF-κB p65 and MAPK signaling path- ways in septic AKI mice. Biomedicine & Pharmacotherapy, 122, 109772.

Article  CAS  Google Scholar 

Kim, J. H., Kim, M. Y., & Cho, J. Y. (2015). Fisetin suppresses macrophage-mediated inflammatory responses by blockade of Src and Syk. Biomolecules & Therapeutics, 23(5), 414–420.

Article  CAS  Google Scholar 

Thoa, N. T., & Son, N. T. (2024). Scutellarein: a review of chemistry and pharmacology. The Journal of Pharmacy and Pharmacology, 2024, Rage039.

Article  Google Scholar 

Paul, A., Das, P., Gogoi, M., Islam, M. A., Das, S., & Zaman, M. K. (2024). Baicalein: multiple pharmacological activities, pharmacokinetics, and clinical trials. Revista Brasileira de Farmacognosia, 2024, 1–15.

Google Scholar 

Yuvaraj, S., Sasikumar, S., Puhari, S. S. M., Ramprasath, T., Baskaran, N., Vasudevan, V., & Selvam, G. S. (2022). Chrysin reduces hypercholesterolemia-mediated atherosclerosis through modulating oxidative stress, microflora, and apoptosis in experimental rats. Journal of Food Biochemistry, 46(11), e14349 (11).

Article  CAS  PubMed  Google Scholar 

Ren, G., Chen, H., Zhang, M., Yang, N., Yang, H., Xu, C., Li, J., Ning, C., Song, Z., Zhou, S., Zhang, S., Wang, X., Lu, Y., Li, N., Zhang, Y., Chen, X., & Zhao, D. (2020). Determination of oroxylin A, oroxylin A 7-O-glucuronide, and oroxylin A sodium sulfonate in beagle dogs by using UHPLC MS/MS Application in a pharmacokinetic study. Journal of Separation Science, 43(12), 2290–2300.

Article  CAS  PubMed  Google Scholar 

Yan, R., Liu, L. G., Huang, X., Quan, Z. S., Shen, Q. K., & Guo, H. Y. (2023). Bioactivities and structure-activity relationships of maslinic acid derivatives: a review. Chemistry & Biodiversity, 2023, e202301327.

Google Scholar 

Huang, J., Xie, M., He, L., Song, X., & Cao, T. (2023). Chlorogenic acid

留言 (0)

沒有登入
gif