Schultheiss H, Fairweather D, Caforio A, Escher F, Hershberger R, Lipshultz S, Liu P, Matsumori A, Mazzanti A, McMurray J, Priori S. Dilated cardiomyopathy. Nat Rev Dis Primers. 2019;5:32.
Article PubMed PubMed Central Google Scholar
Richardson P, McKenna WR, Bristow MC, Maisch B, Mautner B, O’Connell J, Olsen E, Thiene G, Goodwin JC, Gyarfas IWS, et al. Report of the 1995. World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of Cardiomyopathies Circulation. 1996. p. 93.
Hershberger R, Hedges D, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol. 2013;10:531–47.
Article CAS PubMed Google Scholar
Haas J, Frese K, Peil B, Kloos W, Keller A, Nietsch R, Feng Z, Müller S, Kayvanpour E, Vogel B, et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J. 2015;36:1123–1135a.
Article CAS PubMed Google Scholar
Weintraub R, Semsarian C, Macdonald P. Dilated cardiomyopathy. Lancet. 2017;390:400–14.
Article CAS PubMed Google Scholar
Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kühl U, Maisch B, McKenna WJ, Monserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008;29(2):270-6.
Sun X, Shan A, Wei Z, Xu BJB. communications br: Intravenous mesenchymal stem cell-derived exosomes ameliorate myocardial inflammation in the dilated cardiomyopathy. Biochem Biophys Res Commun. 2018;503:2611–8.
Article CAS PubMed Google Scholar
Verdonschot J, Hazebroek M, Derks K, Barandiarán Aizpurua A, Merken J, Wang P, Bierau J, van den Wijngaard A, Schalla S, Abdul Hamid M, et al. Titin cardiomyopathy leads to altered mitochondrial energetics, increased fibrosis and long-term life-threatening arrhythmias. Eur Heart J. 2018;39:864–73.
Article CAS PubMed Google Scholar
Gil K, Pawlak A, Gil R, Frontczak-Baniewicz M, Bil J. The role of invasive diagnostics and its impact on the treatment of dilated cardiomyopathy: a systematic review. Adv Med Sci. 2016;61:331–43.
McNally E, Golbus J, Puckelwartz M. Genetic mutations and mechanisms in dilated cardiomyopathy. J Clin Investig. 2013;123:19–26.
Article CAS PubMed PubMed Central Google Scholar
Japp A, Gulati A, Cook S, Cowie M, Prasad S. The diagnosis and evaluation of dilated cardiomyopathy. J Am Coll Cardiol. 2016;67:2996–3010.
Camargo A, Azuaje F. Identification of dilated cardiomyopathy signature genes through gene expression and network data integration. Genomics. 2008;92:404–13.
Article CAS PubMed Google Scholar
Luo X, Luo P, Zhang Y. Identification of differentially expressed long non-coding RNAs associated with dilated cardiomyopathy using integrated bioinformatics approaches. Drug Discov Ther. 2020;14:181–6.
Article CAS PubMed Google Scholar
Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev. 1996;13:19–50.
Article CAS PubMed Google Scholar
Buttacavoli M, Albanese NN, Roz E, Pucci-Minafra I, Feo S, Cancemi P. Proteomic Profiling of Colon Cancer Tissues: Discovery of New Candidate Biomarkers. Int J Mol Sci. 2020;21(9).
Engel J, Pitkänen A. Biomarkers for epileptogenesis and its treatment. Neuropharmacology. 2020;167:107735.
Article CAS PubMed Google Scholar
Wiese S, Reidegeld KA, Meyer HE, Warscheid B. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics. 2007;7:340–50.
Article CAS PubMed Google Scholar
Manousopoulou A, Gatherer M, Smith C, Nicoll JAR, Woelk CH, Johnson M, Kalaria R, Attems J, Garbis SD, Carare RO. Systems proteomic analysis reveals that clusterin and tissue inhibitor of metalloproteinases 3 increase in leptomeningeal arteries affected by cerebral amyloid angiopathy. Neuropathol Appl Neurobiol. 2017;43:492–504.
Article CAS PubMed Google Scholar
Wang Z, Shang P, Li Q, Wang L, Chamba Y, Zhang B, Zhang H, Wu C. iTRAQ-based proteomic analysis reveals key proteins affecting muscle growth and lipid deposition in pigs. Sci Rep. 2017;7: 46717.
Article PubMed PubMed Central Google Scholar
Leontyev S, Schlegel F, Spath C, Schmiedel R, Nichtitz M, Boldt A, Rübsamen R, Salameh A, Kostelka M, Mohr FW, Dhein S. Transplantation of engineered heart tissue as a biological cardiac assist device for treatment of dilated cardiomyopathy. Eur J Heart Fail. 2013;15:23–35.
Article CAS PubMed Google Scholar
Zhang P, Zhang L, Li Y, Zhu S, Zhao M, Ding S, Li J. Quantitative proteomic analysis to identify differentially expressed proteins in myocardium of epilepsy using iTRAQ coupled with nano-LC-MS/MS. J Proteome Res. 2018;17:305–14.
Article CAS PubMed Google Scholar
Lu D, Xia Y, Chen Z, Chen A, Wu Y, Jia J, Sun A, Zou Y, Qian J, Ge J. Cardiac Proteome Profiling in Ischemic and Dilated Cardiomyopathy Mouse Models. Front Physiol. 2019;10: 750.
Article PubMed PubMed Central Google Scholar
Lionetti V, Matteucci M, Ribezzo M, Di Silvestre D, Brambilla F, Agostini S, Mauri P, Padeletti L, Pingitore A, Delsedime L, et al. Regional mapping of myocardial hibernation phenotype in idiopathic end-stage dilated cardiomyopathy. J Cell Mol Med. 2014;18:396–414.
Article CAS PubMed PubMed Central Google Scholar
Roselló-Lletí E, Alonso J, Cortés R, Almenar L, Martínez-Dolz L, Sánchez-Lázaro I, Lago F, Azorín I, Juanatey JR, Portolés M, Rivera M. Cardiac protein changes in ischaemic and dilated cardiomyopathy: a proteomic study of human left ventricular tissue. J Cell Mol Med. 2012;16:2471–86.
Article PubMed PubMed Central Google Scholar
Cheow ESH, Cheng WC, Yap T, Dutta B, Lee CN, Kleijn DPV, Sorokin V, Sze SK. Myocardial injury is distinguished from stable angina by a set of candidate plasma biomarkers identified using iTRAQ/MRM-based approach. J Proteome Res. 2018;17:499–515.
Article CAS PubMed Google Scholar
Yasuhara S, Maekawa M, Bamba S, Kurihara M, Nakanishi N, Yamamoto T, Sakai H, Yagi N, Nakagawa Y, Sasaki M. Energy metabolism and nutritional status in hospitalized patients with chronic heart failure. Ann Nutr Metab. 2020;76:129–39.
Article CAS PubMed Google Scholar
Woolbright BL, Rajendran G, Harris RA, Taylor JA. 3rd: metabolic flexibility in cancer: targeting the pyruvate dehydrogenase kinase:pyruvate dehydrogenase axis. Mol Cancer Ther. 2019;18:1673–81.
Article CAS PubMed Google Scholar
Doigneaux C, Pedley AM, Mistry IN, Papayova M, Benkovic SJ, Tavassoli A. Hypoxia drives the assembly of the multienzyme purinosome complex. J Biol Chem. 2020;295:9551–66.
Article CAS PubMed PubMed Central Google Scholar
Haas J, Frese KS, Sedaghat-Hamedani F, Kayvanpour E, Tappu R, Nietsch R, Tugrul OF, Wisdom M, Dietrich C, Amr A, Weis T, Niederdränk T, Murphy MP, Krieg T, Dörr M, Völker U, Fielitz J, Frey N, Felix SB, Keller A, Katus HA, Meder B. Energy Metabolites as Biomarkers in Ischemic and Dilated Cardiomyopathy. Int J Mol Sci. 2021;22(4).
Hammer E, Goritzka M, Ameling S, Darm K, Steil L, Klingel K, Trimpert C, Herda LR, Dörr M, Kroemer HK, et al. Characterization of the human myocardial proteome in inflammatory dilated cardiomyopathy by label-free quantitative shotgun proteomics of heart biopsies. J Proteome Res. 2011;10:2161–71.
Article CAS PubMed Google Scholar
Hunter CA, Kartal F, Koc ZC, Murphy T, Kim JH, Denvir J, Koc EC. Mitochondrial oxidative phosphorylation is impaired in TALLYHO mice, a new obesity and type 2 diabetes animal model. Int J Biochem Cell Biol. 2019;116: 105616.
Article CAS PubMed PubMed Central Google Scholar
Lauridsen PE, Rasmussen LJ, Desler C. Mitochondrial oxidative phosphorylation capacity of cryopreserved cells. Mitochondrion. 2019;47:47–53.
Article CAS PubMed Google Scholar
Colak D, Kaya N, Al-Zahrani J, Al Bakheet A, Muiya P, Andres E, Quackenbush J, Dzimiri N. Left ventricular global transcriptional profiling in human end-stage dilated cardiomyopathy. Genomics. 2009;94:20–31.
Article CAS PubMed Google Scholar
Almomani R, Herkert JC, Posafalvi A, Post JG, Boven LG, van der Zwaag PA, Willems P, van Veen-Hof IH, Verhagen JMA, Wessels MW, et al. Homozygous damaging SOD2 variant causes lethal neonatal dilated cardiomyopathy. J Med Genet. 2020;57:23–30.
Article CAS PubMed Google Scholar
Buchwald A, Till H, Unterberg C, Oberschmidt R, Figulla HR, Wiegand V. Alterations of the mitochondrial respiratory chain in human dilated cardiomyopathy. Eur Heart J. 1990;11:509–16.
Article CAS PubMed Google Scholar
Hershberger RE, Norton N, Morales A, Li D, Siegfried JD, Gonzalez-Quintana J. Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy. Circ Cardiovasc Genet. 2010;3:155–61.
Article CAS PubMed PubMed Central Google Scholar
Sainte Beuve C, Allen PD, Dambrin G, Rannou F, Marty I, Trouvé P, Bors V, Pavie A, Gandgjbakch I, Charlemagne D. Cardiac calcium release channel (ryanodine receptor) in control and cardiomyopathic human hearts: mRNA and protein contents are differentially regulated. J Mol Cell Cardiol. 1997;29:1237–46.
留言 (0)