Comparison of Huntington’s disease phenotype progression in male and female heterozygous FDNQ175 mice

Martin JB, Gusella JF. Huntingtons disease. N Engl J Med. 1986;315(20):1267–76.

Article  CAS  PubMed  Google Scholar 

Roos RA. Huntington’s disease: a clinical review. Orphanet J Rare Dis. 2010;5(1):1–8.

Article  Google Scholar 

MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, Barnes G, Taylor SA, James M, Groot N. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72(6):971–83.

Article  Google Scholar 

DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel J, Aronin N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 1997;277(5334):1990–3.

Article  CAS  PubMed  Google Scholar 

Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet. 1993;4(4):398–403.

Article  CAS  PubMed  Google Scholar 

Furtado S, Suchowersky O, Rewcastle NB, Graham L, Klimek ML, Garber A. Relationship between trinucliotide repeats and neuropathological changes in Huntington’s diease. Ann Neurol. 1996;39(1):132–6.

Article  CAS  PubMed  Google Scholar 

Ferrante RJ. (2009). Mouse models of Huntington’s disease and methodological considerations for therapeutic trials. Biochimica et Biophysica Acta (BBA)-Molecular basis of Disease, 1792(6), 506–20.

Menalled LB, Kudwa AE, Miller S, Fitzpatrick J, Watson-Johnson J, Keating N, Ruiz M, Mushlin R, Alosio W, McConnell K. Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington’s disease: zQ175. PLoS ONE. 2012;7(12):e49838.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Southwell AL, Smith-Dijak A, Kay C, Sepers M, Villanueva EB, Parsons MP, Xie Y, Anderson L, Felczak B, Waltl S. An enhanced Q175 knock-in mouse model of Huntington disease with higher mutant huntingtin levels and accelerated disease phenotypes. Hum Mol Genet. 2016;25(17):3654–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bode FJ, Stephan M, Suhling H, Pabst R, Straub RH, Raber KA, Bonin M, Nguyen HP, Riess O, Bauer A. Sex differences in a transgenic rat model of Huntington’s disease: decreased 17β-estradiol levels correlate with reduced numbers of DARPP32 + neurons in males. Hum Mol Genet. 2008;17(17):2595–609.

Article  CAS  PubMed  Google Scholar 

Dorner JL, Miller BR, Barton SJ, Brock TJ, Rebec GV. Sex differences in behavior and striatal ascorbate release in the 140 CAG knock-in mouse model of Huntington’s disease. Behav Brain Res. 2007;178(1):90–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abd-Elrahman KS, Hamilton A, Albaker A, Ferguson SS. mGluR5 contribution to neuropathology in Alzheimer mice is disease stage-dependent. ACS Pharmacol Translational Sci. 2020b;3(2):334–44.

Article  CAS  Google Scholar 

Abd-Elrahman KS, Hamilton A, Hutchinson SR, Liu F, Russell RC, Ferguson SS. mGluR5 antagonism increases autophagy and prevents disease progression in the zQ175 mouse model of Huntington’s disease. Sci Signal. 2017;10(510):eaan6387.

Article  PubMed  Google Scholar 

Abd-Elrahman KS, Sarasija S, Colson TLL, Ferguson SS. A M1 muscarinic acetylcholine receptor positive allosteric modulator improves pathology and cognitive deficits in female APPswe/PSEN1∆E9 mice. Br J Pharmacol. 2021. https://doi.org/10.1111/bph.15750.

Article  Google Scholar 

Li SH, Colson TL, Abd-Elrahman KS, Ferguson SSG. Metabotropic glutamate receptor 2/3 activation improves Motor Performance and reduces Pathology in heterozygous zQ175 Huntington Disease mice. J Pharmacol Exp Ther. 2021;379(1):74–84.

Article  CAS  PubMed  Google Scholar 

Li SH, Colson TL, Abd-Elrahman KS, Ferguson SSG. Metabotropic glutamate receptor 5 antagonism reduces Pathology and differentially improves symptoms in male and female heterozygous zQ175 Huntington’s mice. Front Mol Neurosci. 2022;15:801757. https://doi.org/10.3389/fnmol.2022.801757.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lüesse H-G, Schiefer J, Spruenken A, Puls C, Block F, Kosinski CM. Evaluation of R6/2 HD transgenic mice for therapeutic studies in Huntington’s disease: behavioral testing and impact of diabetes mellitus. Behav Brain Res. 2001;126(1–2):185–95.

Article  PubMed  Google Scholar 

Paulsen JS, Miller AC, Hayes T, Shaw E. (2017). Cognitive and behavioral changes in Huntington disease before diagnosis. Handbook of clinical neurology, 144, 69–91.

Southwell AL, Kordasiewicz HB, Langbehn D, Skotte NH, Parsons MP, Villanueva EB, Caron NS, Østergaard ME, Anderson LM, Xie Y. Huntingtin suppression restores cognitive function in a mouse model of Huntington’s disease. Sci Transl Med. 2018;10(461):eaar3959.

Article  PubMed  Google Scholar 

Landles C, Bates GP. Huntingtin and the molecular pathogenesis of Huntington’s disease: Fourth in Molecular Medicine Review Series. EMBO Rep. 2004;5(10):958–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao JK, Detloff PJ, Gardner RG, Stella N. Sex-dependent behavioral impairments in the HdhQ350/+ mouse line. Behav Brain Res. 2018b;337:34–45.

Article  CAS  PubMed  Google Scholar 

Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature. 2004;431(7010):805–10.

Article  CAS  PubMed  Google Scholar 

Prodoehl J, Corcos DM, Vaillancourt DE. Basal ganglia mechanisms underlying precision grip force control. Neurosci Biobehavioral Reviews. 2009;33(6):900–8.

Article  Google Scholar 

Ghosh R, Tabrizi SJ. (2018). Clinical features of Huntington’s disease. Polyglutamine Disorders, 1–28.

Hennemann D. Diagnosis|‘Space cadet’syndrome of female FVB/n mice. Transgenic Res. 2003;12(1):59–69.

Article  Google Scholar 

Rosenbaum MD, VandeWoude S, Bielefeldt-Ohmann H. Sudden onset of mortality within a colony of FVB/n mice. Lab Anim. 2007;36(6):15–5.

Article  Google Scholar 

Bird CM, Burgess N. The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci. 2008;9(3):182–94.

Article  CAS  PubMed  Google Scholar 

Grove-Strawser D, Boulware MI, Mermelstein PG. Membrane estrogen receptors activate the metabotropic glutamate receptors mGluR5 and mGluR3 to bidirectionally regulate CREB phosphorylation in female rat striatal neurons. Neuroscience. 2010;170(4):1045–55.

Article  CAS  PubMed  Google Scholar 

de Souza JM, Ferreira-Vieira TH, Maciel EM, Silva NC, Lima IBQ, Doria JG, Olmo IG, Ribeiro FM. mGluR5 ablation leads to age-related synaptic plasticity impairments and does not improve Huntington’s disease phenotype. Sci Rep. 2022;12(1):8982.

Article  PubMed  PubMed Central  Google Scholar 

Doria J, Silva F, De Souza J, Vieira L, Carvalho T, Reis H, Pereira G, Dobransky T, Ribeiro F. Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of H untington’s disease. Br J Pharmacol. 2013;169(4):909–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao J, Willett JA, Dorris DM, Meitzen J. Sex differences in medium spiny neuron excitability and glutamatergic synaptic input: heterogeneity across striatal regions and evidence for estradiol-dependent sexual differentiation. Front Endocrinol. 2018a;9:173.

Article  Google Scholar 

Smejkalova T, Woolley CS. Estradiol acutely potentiates hippocampal excitatory synaptic transmission through a presynaptic mechanism. J Neurosci. 2010;30(48):16137–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weaver CE Jr, Park-Chung M, Gibbs TT, Farb DH. 17beta-Estradiol protects against NMDA-induced excitotoxicity by direct inhibition of NMDA receptors. Brain Res. 1997;761(2):338–41. https://doi.org/10.1016/s0006-8993(97)00449-6.

Article  CAS  PubMed  Google Scholar 

Oberlander JG, Woolley CS. 17β-Estradiol acutely potentiates glutamatergic synaptic transmission in the hippocampus through distinct mechanisms in males and females. J Neurosci. 2017;37(50):12314–27.

Article  CAS  PubMed Central  Google Scholar 

Foroud T, Gray J, Ivashina J, Conneally PM. Differences in duration of Huntington’s disease based on age at onset. J Neurol Neurosurg Psychiatry. 1999;66(1):52–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hentosh S, Zhu L, Patino J, Furr JW, Rocha NP, Stimming F, E. Sex differences in Huntington’s disease: evaluating the enroll-HD database. Mov Disorders Clin Pract. 2021;8(3):420–6.

Article  Google Scholar 

Zielonka D, Marinus J, Roos RA, De Michele G, Di Donato S, Putter H, Marcinkowski J, Squitieri F, Bentivoglio AR, Landwehrmeyer GB. The influence of gender on phenotype and disease progression in patients with Huntington’s disease. Parkinsonism Relat Disord. 2013;19(2):192–7.

Article  PubMed  Google Scholar 

Kuljis DA, Gad L, Loh DH, MacDowell Kaswan Z, Hitchcock ON, Ghiani CA, Colwell CS. Sex differences in circadian dysfunction in the BACHD mouse model of Huntington’s disease. PLoS ONE. 2016;11(2):e0147583.

Article  PubMed  PubMed Central  Google Scholar 

Padovan-Neto FE, Jurkowski L, Murray C, Stutzmann GE, Kwan M, Ghavami A, Beaumont V, Park LC, West AR. Age-and sex-related changes in cortical and striatal nitric oxide synthase in the Q175 mouse model of Huntington’s disease. Nitric Oxide. 2019;83:40–50.

Article 

留言 (0)

沒有登入
gif