The Role of Ubiquitin–Proteasome System and Mitophagy in the Pathogenesis of Parkinson's Disease

Akutsu, M., Dikic, I., & Bremm, A. (2016). Ubiquitin chain diversity at a glance. Journal of Cell Science, 129(5), 875–880. https://doi.org/10.1242/jcs.183954

Article  CAS  PubMed  Google Scholar 

Alexopoulou, Z., Lang, J., Perrett, R. M., Elschami, M., Hurry, M. E., Kim, H. T., et al. (2016). Deubiquitinase Usp8 regulates α-synuclein clearance and modifies its toxicity in Lewy body disease. Proceedings of the National Academy of Sciences of the United States of America, 113(32), E4688-4697. https://doi.org/10.1073/pnas.1523597113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartels, T., De Schepper, S., & Hong, S. (2020). Microglia modulate neurodegeneration in Alzheimer’s and Parkinson’s diseases. Science, 370(6512), 66–69. https://doi.org/10.1126/science.abb8587

Article  CAS  PubMed  Google Scholar 

Behl, T., Kumar, S., Althafar, Z. M., Sehgal, A., Singh, S., Sharma, N., et al. (2022). Exploring the Role of Ubiquitin-Proteasome System in Parkinson’s Disease. Molecular Neurobiology, 59(7), 4257–4273. https://doi.org/10.1007/s12035-022-02851-1

Article  CAS  PubMed  Google Scholar 

Bello, A. I., Goswami, R., Brown, S. L., Costanzo, K., Shores, T., Allan, S., et al. (2022). Deubiquitinases in neurodegeneration. Cells. https://doi.org/10.3390/cells11030556

Article  PubMed  PubMed Central  Google Scholar 

Bellucci, A., Navarria, L., Zaltieri, M., Falarti, E., Bodei, S., Sigala, S., et al. (2011). Induction of the unfolded protein response by α-synuclein in experimental models of Parkinson’s disease. Journal of Neurochemistry, 116(4), 588–605. https://doi.org/10.1111/j.1471-4159.2010.07143.x

Article  CAS  PubMed  Google Scholar 

Bingol, B., & Sheng, M. (2016). Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radical Biology & Medicine, 100, 210–222. https://doi.org/10.1016/j.freeradbiomed.2016.04.015

Article  CAS  Google Scholar 

Bingol, B., Tea, J. S., Phu, L., Reichelt, M., Bakalarski, C. E., Song, Q., et al. (2014). The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature, 510(7505), 370–375. https://doi.org/10.1038/nature13418

Article  CAS  PubMed  Google Scholar 

Biswas, S., & Bagchi, A. (2021). Mutational Impact on “in-Between-Ring” (IBR) Domain of PARKIN on Protein Stability and Function. Applied Biochemistry and Biotechnology, 193(6), 1603–1616. https://doi.org/10.1007/s12010-021-03491-2

Article  CAS  PubMed  Google Scholar 

Borsche, M., König, I. R., Delcambre, S., Petrucci, S., Balck, A., Brüggemann, N., et al. (2020). Mitochondrial damage-associated inflammation highlights biomarkers in PRKN/PINK1 parkinsonism. Brain, 143(10), 3041–3051. https://doi.org/10.1093/brain/awaa246

Article  PubMed  PubMed Central  Google Scholar 

Bouman, L., Schlierf, A., Lutz, A. K., Shan, J., Deinlein, A., Kast, J., et al. (2011). Parkin is transcriptionally regulated by ATF4: Evidence for an interconnection between mitochondrial stress and ER stress. Cell Death and Differentiation, 18(5), 769–782. https://doi.org/10.1038/cdd.2010.142

Article  CAS  PubMed  Google Scholar 

Buneeva, O., & Medvedev, A. (2022). Atypical ubiquitination and Parkinson’s disease. International Journal of Molecular Science. https://doi.org/10.3390/ijms23073705

Article  Google Scholar 

Burchell, V. S., Nelson, D. E., Sanchez-Martinez, A., Delgado-Camprubi, M., Ivatt, R. M., Pogson, J. H., et al. (2013). The Parkinson’s disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nature Neuroscience, 16(9), 1257–1265. https://doi.org/10.1038/nn.3489

Article  CAS  PubMed  Google Scholar 

Cabral Miranda, F., Adão-Novaes, J., Hauswirth, W. W., Linden, R., Petrs-Silva, H., & Chiarini, L. B. (2014). CHIP, a carboxy terminus HSP-70 interacting protein, prevents cell death induced by endoplasmic reticulum stress in the central nervous system. Frontiers in Cellular Neuroscience, 8, 438. https://doi.org/10.3389/fncel.2014.00438

Article  PubMed  Google Scholar 

Cai, Z. L., Xu, J., Xue, S. R., Liu, Y. Y., Zhang, Y. J., Zhang, X. Z., et al. (2015). The E3 ubiquitin ligase seven in absentia homolog 1 may be a potential new therapeutic target for Parkinson’s disease. Neural Regeneration Research, 10(8), 1286–1291. https://doi.org/10.4103/1673-5374.162763

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carmine Belin, A., Westerlund, M., Bergman, O., Nissbrandt, H., Lind, C., Sydow, O., et al. (2007). S18Y in ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) associated with decreased risk of Parkinson’s disease in Sweden. Parkinsonism & Related Disorders, 13(5), 295–298. https://doi.org/10.1016/j.parkreldis.2006.12.002

Article  Google Scholar 

Cha, G.-H., Kim, S., Park, J., Lee, E., Kim, M., Lee, S. B., et al. (2005). Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 102(29), 10345–10350. https://doi.org/10.1073/pnas.0500346102

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang, M., Jin, W., Chang, J. H., Xiao, Y., Brittain, G. C., Yu, J., et al. (2011). The ubiquitin ligase Peli1 negatively regulates T cell activation and prevents autoimmunity. Nature Immunology, 12(10), 1002–1009. https://doi.org/10.1038/ni.2090

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaugule, V. K., Burchell, L., Barber, K. R., Sidhu, A., Leslie, S. J., Shaw, G. S., et al. (2011). Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO Journal, 30(14), 2853–2867. https://doi.org/10.1038/emboj.2011.204

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, J., Xue, J., Ruan, J., Zhao, J., Tang, B., & Duan, R. (2017). Drosophila CHIP protects against mitochondrial dysfunction by acting downstream of Pink1 in parallel with Parkin. The FASEB Journal, 31(12), 5234–5245. https://doi.org/10.1096/fj.201700011R

Article  CAS  PubMed  Google Scholar 

Chistiakov, D. A., & Chistiakov, A. A. (2017). α-Synuclein-carrying extracellular vesicles in Parkinson’s disease: Deadly transmitters. Acta Neurologica Belgica, 117(1), 43–51. https://doi.org/10.1007/s13760-016-0679-1

Article  PubMed  Google Scholar 

Chou, C. K., Chang, Y. T., Korinek, M., Chen, Y. T., Yang, Y. T., Leu, S., et al. (2017). The Regulations of Deubiquitinase USP15 and Its Pathophysiological Mechanisms in Diseases. Int J Mol Sci, 18(3), doi:https://doi.org/10.3390/ijms18030483.

Chung, K. K., Zhang, Y., Lim, K. L., Tanaka, Y., Huang, H., Gao, J., et al. (2001). Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: Implications for Lewy-body formation in Parkinson disease. Nature Medicine, 7(10), 1144–1150. https://doi.org/10.1038/nm1001-1144

Article  CAS  PubMed  Google Scholar 

Colonna, M., & Butovsky, O. (2017). Microglia function in the central nervous system during health and neurodegeneration. Annual Review of Immunology, 35, 441–468. https://doi.org/10.1146/annurev-immunol-051116-052358

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cornelissen, T., Haddad, D., Wauters, F., Van Humbeeck, C., Mandemakers, W., Koentjoro, B., et al. (2014). The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Human Molecular Genetics, 23(19), 5227–5242. https://doi.org/10.1093/hmg/ddu244

Article  CAS  PubMed  Google Scholar 

Corti, O., Lesage, S., & Brice, A. (2011). What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiological Reviews, 91(4), 1161–1218. https://doi.org/10.1152/physrev.00022.2010

Article  CAS  PubMed  Google Scholar 

Costa, C. A. D., Manaa, W. E., Duplan, E., & Checler, F. (2020). The endoplasmic reticulum stress/unfolded protein response and their contributions to Parkinson’s disease physiopathology. Cells. https://doi.org/10.3390/cells9112495

Article  PubMed  PubMed Central  Google Scholar 

Crosas, B., Hanna, J., Kirkpatrick, D. S., Zhang, D. P., Tone, Y., Hathaway, N. A., et al. (2006). Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell, 127(7), 1401–1413. https://doi.org/10.1016/j.cell.2006.09.051

Article  CAS  PubMed  Google Scholar 

Csizmadia, T., & Lőw, P. (2020). The role of deubiquitinating enzymes in the various forms of autophagy. Internatioal Journal of Molecular Science, 21(12), 4196.

Article  CAS  Google Scholar 

D’Andrea, A., & Pellman, D. (1998). Deubiquitinating enzymes: A new class of biological regulators. Critical Reviews in Biochemistry and Molecular Biology, 33(5), 337–352. https://doi.org/10.1080/10409239891204251

Article  CAS  PubMed  Google Scholar 

da Costa, C. A., Sunyach, C., Giaime, E., West, A., Corti, O., Brice, A., et al. (2009). Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson’s disease. Nature Cell Biology, 11(11), 1370–1375. https://doi.org/10.1038/ncb1981

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai, D., Yuan, J., Wang, Y., Xu, J., Mao, C., & Xiao, Y. (2019). Peli1 controls the survival of dopaminergic neurons through modulating microglia-mediated neuroinflammation. Scientific Reports, 9(1), 8034. https://doi.org/10.1038/s41598-019-44573-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das, S., Ramakrishna, S., & Kim, K. S. (2020). Critical roles of deubiquitinating enzymes in the nervous system and neurodegenerative disorders. Molecules and Cells, 43(3), 203–214. https://doi.org/10.14348/molcells.2020.2289

Article  CAS  PubMed 

留言 (0)

沒有登入
gif