A Comprehensive Review on Natural Therapeutics for Wound Treatment

Boateng J, Catanzano O. Advanced therapeutic dressings for effective wound healing—a review. J Pharm Sci. 2015:3653–80. https://doi.org/10.1002/jps.24610.

Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin microbiol rev. 2001;14:244–69. https://doi.org/10.1128/CMR.14.2.244-269.20.

Article  CAS  Google Scholar 

Davenport M, Dickinson LE. Engineered biomaterials for chronic wound healing. Chronic Wounds, Wound Dress Wound Heal. 2018:51–74. https://doi.org/10.1007/15695_2017_92.

Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care. 2015;4:560–82. https://doi.org/10.1089/wound.2015.0635.

Article  Google Scholar 

Frigg A, Pagenstert G, Schäfer D, Valderrabano V, Hintermann B. Recurrence and prevention of diabetic foot ulcers after total contact casting. Foot Ankle Int. 2007;28:64–9. https://doi.org/10.3113/FAI.2007.0012.

Article  Google Scholar 

Sathyaraj WV, Prabakaran L, Bhoopathy J, Dharmalingam S, Karthikeyan R, Atchudan R. Therapeutic efficacy of polymeric biomaterials in treating diabetic wounds—an upcoming wound healing technology. Polymers. 2023;15:5–1205.

Article  Google Scholar 

Matter MT, Probst S, Läuchli S, Herrmann IK. Uniting drug and delivery: metal oxide hybrid nanotherapeutics for skin wound care. Pharmaceutics. 2020:12. https://doi.org/10.3390/pharmaceutics12080780.

Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol. 2018;9:419. https://doi.org/10.3389/fphys.2018.00419.

Article  Google Scholar 

Schultz GS, Chin GA, Moldawer L, Diegelmann RF. Principles of wound healing. In: Fitridge R, Thompson M, editors. Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists. Adelaide (AU): University of Adelaide Press. https://www.ncbi.nlm.nih.gov/pubmed/30485016.

Cañedo-Dorantes L. Cañedo-Ayala M. Skin acute wound healing: a comprehensive review. Int J Inflam. 2019;2019:3706315. https://doi.org/10.1155/2019/3706315.

Article  Google Scholar 

Bhoopathy J, Dharmalingam S, Sathyaraj WV, Rajendran S, Rymbai S, Senthil R, Atchudan R. Sericin/human placenta-derived extracellular matrix scaffolds for cutaneous wound treatment—preparation, characterization, in vitro and in vivo analyses. Pharmaceutics. 2023;15: 2:362.

Article  Google Scholar 

Jayavardhini B, Pravin YR, Kumar C, Murugesan R, Vedakumari SW. Graphene oxide impregnated sericin/collagen scaffolds–fabrication and characterization. Mater Lett. 2022;15:307–131060.

Google Scholar 

Vedakumari WS, Ayaz N, Karthick AS, Senthil R, Sastry TP. Quercetin impregnated chitosan–fibrin composite scaffolds as potential wound dressing materials—fabrication, characterization and in vivo analysis. Eur J Pharm Sci. 2017;97:106–12.

Article  CAS  Google Scholar 

Rymbai S, Jayavardhini B, Kumar C, Lokesh P, Pravin YR, Vedakumari SW. Effect of quercetin incorporated silk sericin/gelatin scaffolds in wound healing. Chettinad Health City Med J. 9(1)

Soubhagya AS, Moorthi A, Prabaharan M. Preparation and characterization of chitosan/pectin/ZnO porous films for wound healing. Int J Biol Macromol. 2020;157:135–45. https://doi.org/10.1016/j.ijbiomac.2020.04.156.

Article  CAS  Google Scholar 

Maeda M, Kadota K, Kajihara M, Sano A, Fujioka K. Sustained release of human growth hormone (hGH) from collagen film and evaluation of effect on wound healing in db/db mice. J Control Release. 2001;77:261–72. https://doi.org/10.1016/S0168-3659(01)00512-0.

Article  CAS  Google Scholar 

Gopinath D, Ahmed MR, Gomathi K, Chitra K, Sehgal PK, Jayakumar R. Dermal wound healing processes with curcumin incorporated collagen films. Biomater. 2004;25:1911–7. https://doi.org/10.1016/S0142-9612(03)00625-2.

Article  CAS  Google Scholar 

Deepachitra R, Ramnath V, Sastry TP. Graphene oxide incorporated collagen–fibrin biofilm as a wound dressing material. RSC Adv. 2014;4:62717–27. https://doi.org/10.3390/ma12101628.

Article  CAS  Google Scholar 

Feng A, Borrelli M, Meyer-ter-Vehn T, Reichl S, Schrader S, Geerling G. Epithelial wound healing on keratin film, amniotic membrane and polystyrene in vitro. Curr Eye Res. 2014;39:561–70. https://doi.org/10.3109/02713683.2013.853804.

Article  CAS  Google Scholar 

Tanabe T, Okitsu N, Tachibana A, Yamauchi K. Preparation and characterization of keratin–chitosan composite film. Biomater. 2002;23:817–25. https://doi.org/10.1016/S0142-9612(01)00187-9.

Article  CAS  Google Scholar 

Shah A, Ali Buabeid M, Arafa E-SA, Hussain I, Li L, Murtaza G. The wound healing and antibacterial potential of triple-component nanocomposite (chitosan-silver-sericin) films loaded with moxifloxacin. Int J Pharm. 2019;564:22–38. https://doi.org/10.1016/j.ijpharm.2019.04.046.

Article  CAS  Google Scholar 

Pei HN, Chen XG, Li Y, Zhou HY. Characterization and ornidazole release in vitro of a novel composite film prepared with chitosan/poly (vinyl alcohol)/alginate. J Biomed Mater Res A. 2008;85:566–72. https://doi.org/10.1002/jbm.a.31223.

Article  CAS  Google Scholar 

Tyeb S, Kumar N, Kumar A, Verma V. Flexible agar-sericin hydrogel film dressing for chronic wounds. Carbohydr Polym. 2018;200:572–82. https://doi.org/10.1016/j.carbpol.2018.08.030.

Article  CAS  Google Scholar 

Siqueira P, Siqueira É, de Lima AE, Siqueira G, Pinzón-Garcia AD, Lopes AP, et al. Three-dimensional stable alginate-nanocellulose gels for biomedical applications: towards tunable mechanical properties and cell growing. Nanomater. 2019:9. https://doi.org/10.3390/nano9010078.

Ehterami A, Salehi M, Farzamfar S, Samadian H, Vaez A, Ghorbani S, et al. Chitosan/alginate hydrogels containing Alpha-tocopherol for wound healing in rat model. J Drug Deliv Sci Technol. 2019;51:204–13. https://doi.org/10.1016/j.jddst.2019.02.032.

Article  CAS  Google Scholar 

Shihara M, Nakanishi K, Ono K, Sato M, Kikuchi M, Saito Y, et al. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomater. 2002;23:833–40. https://doi.org/10.1016/S0142-9612(01)00189-2.

Article  Google Scholar 

Ribeiro MP, Espiga A, Silva D, Baptista P, Henriques J, Ferreira C, et al. Development of a new chitosan hydrogel for wound dressing. Wound Repair Regen. 2009;17:817–24. https://doi.org/10.1111/j.1524-475X.2009.00538.x.

Article  Google Scholar 

Moraes PR, Saska S, Barud H, Lima LR, Martins VD, Plepis AM, et al. Bacterial cellulose/collagen hydrogel for wound healing. Mater Res. 2016;19:106–16. https://doi.org/10.1590/1980-5373-MR-2015-0249.

Article  CAS  Google Scholar 

Zhang X, Yin Z, Guo Y, Huang H, Zhou J, Wang L, et al. A facile and large-scale synthesis of a PVA/chitosan/collagen hydrogel for wound healing. New J Chem. 2020;44:20776–84. https://doi.org/10.1039/D0NJ04016A.

Article  CAS  Google Scholar 

Giusto G, Vercelli C, Comino F, Caramello V, Tursi M, Gandini M. A new, easy-to-make pectin-honey hydrogel enhances wound healing in rats. BMC Complement Altern Med. 2017;17:266. https://doi.org/10.1186/s12906-017-1769-1.

Article  CAS  Google Scholar 

Kim J, Lee C-M. Wound healing potential of a polyvinyl alcohol-blended pectin hydrogel containing Hippophae rahmnoides L. extract in a rat model. Int J Biol Macromol. 2017;99:586–93. https://doi.org/10.1016/j.ijbiomac.2017.03.014.

Article  CAS  Google Scholar 

Noorjahan SE, Sastry TP. An in vivo study of hydrogels based on physiologically clotted fibrin-gelatin composites as wound-dressing materials. J Biomed Mater Res B Appl Biomater. 2004;71:305–12. https://doi.org/10.1002/jbm.b.30094.

Article  CAS  Google Scholar 

Gil J, Natesan S, Li J, Valdes J, Harding A, Solis M, et al. A PEGylated fibrin hydrogel-based antimicrobial wound dressing controls infection without impeding wound healing. Int Wound J. 2017;14:1248–57. https://doi.org/10.1111/iwj.12791.

Article  Google Scholar 

Park M, Shin HK, Kim B-S, Kim MJ, Kim I-S, Park B-Y, et al. Effect of discarded keratin-based bio composite hydrogels on the wound healing process in vivo. Mater Sci Eng C Mater Biol Appl. 2015;55:88–94. https://doi.org/10.1016/j.msec.2015.03.033.

Article  CAS  Google Scholar 

Kumaran P, Gupta A, Sharma S. Synthesis of wound-healing keratin hydrogels using chicken feathers proteins and its properties. Int J Pharm Pharm Sci. 2017;9(171) https://doi.org/10.22159/IJPPS.2017V9I2.15620.

Xue R, Liu Y, Zhang Q, Liang C, Qin H, Liu P, et al. Shape changes and interaction mechanism of Escherichia coli cells treated with sericin and use of a sericin-based hydrogel for wound healing. Appl Environ Microbiol. 2016;82:4663–72. https://doi.org/10.1128/AEM.00643-16.

Article  CAS  Google Scholar 

Verma J, Kanoujia J, Parashar P, Tripathi CB, Saraf SA. Wound healing applications of sericin/chitosan-capped silver nanoparticles incorporated hydrogel. Drug Deliv Transl Res. 2017;7:77–88. https://doi.org/10.1007/s13346-016-0322-y.

Article  CAS  Google Scholar 

Baptista-Silva S, Bernardes BG, Borges S, Rodrigues I, Fernandes R, Gomes-Guerreiro S, Pinto MT, Pintado M, Soares R, Costa R, Oliveira AL. Exploring silk sericin for diabetic wounds: an in situ-forming hydrogel to protect against oxidative stress and improve tissue healing and regeneration. Biomol. 2022;8(12):801.

Google Scholar 

Gallardo-Rivera R, de Los Ángeles Aguilar-Santamaría M, Silva-Bermúdez P, García-López J, Tecante A, Velasquillo C, et al. Polyelectrolyte complex of Aloe vera, chitosan, and alginate produced fibroblast and lymphocyte viabilities and migration. Carbohydr Polym. 2018;192:84–94. https://doi.org/10.1016/j.carbpol.2018.03.044.

Article  CAS  Google Scholar 

Alemdaroğlu C, Değim Z, Celebi N, Zor F, Oztürk S, Erdoğan D. An investigation on burns wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns. 2006;32:319–27. https://doi.org/10.1016/j.burns.2005.10.015.

Article  Google Scholar 

Değim Z, Celebi N, Sayan H, Babül A, Erdoğan D, Take G. An investigation on skin wound healing in mice with a taurine-chitosan gel formulation. Amino Acids. 2002;22:187–98. https://doi.org/10.1007/s007260200007.

Article  Google Scholar 

Jridi M, Bardaa S, Moalla D, Rebaii T, Souissi N, Sahnoun Z, Nasri M. Microstructure, rheological and wound healing properties of collagen-based gel from cuttlefish skin. Int J Biol Macromol. 2015;77:369–74.

Article  CAS  Google Scholar 

Ersel M, Uyanikgil Y, Karbek Akarca F, Ozcete E, Altunci YA, Karabey F, et al. Effects of silk sericin on incision wound healing in a dorsal skin flap wound healing rat model. Med Sci Monit. 2016;22:1064–78. https://doi.org/10.12659/MSM.897981.

Article  CAS  Google Scholar 

Yang M, Wang Y, Tao G, Cai R, Wang P, Liu L, et al. Fabrication of sericin/agrose gel loaded lysozyme and its potential in wound dressing application. Nanomater. 2018:8. https://doi.org/10.3390/nano8040235.

Ureña-Benavides EE, Brown PJ, Kitchens CL. Effect of jet stretch and particle load on cellulose nanocrystal-alginate nanocomposite fibers. Langmuir. 2010;26:14263–70. https://doi.org/10.1021/la102216v.

Article  CAS  Google Scholar 

Abdel-Mohsen AM, Frankova J, Abdel-Rahman RM, Sal

留言 (0)

沒有登入
gif