Xenogeneic Stem Cell–Induced Cardiac Progenitor Cells Regenerated Infarcted Myocardium in Rat Model

Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics—2016 Update: a report from the American Heart Association. Circ. 2016;133:e38–60. https://doi.org/10.1161/cir.0000000000000350.

Article  Google Scholar 

St John Sutton MG, Sharpe N, Sutton MGSJ, Sharpe N. Clinical cardiology: new frontiers left ventricular remodeling after myocardial infarction pathophysiology and therapy. Circ. 2009;101:2981–8.

Article  Google Scholar 

Bhatnagar A, Rush Z. Cardiovascular regenerative medicine: the developing heart meets adult heart repair. Circ Res. 2009;105:1041–3.

Article  Google Scholar 

Hansson EM, Lindsay ME, Chien KR. Regeneration next: toward heart stem cell therapeutics. Cell Stem Cell. 2009;5:364–77.

Article  CAS  Google Scholar 

Uemura R, Xu M, Ahmad N, Ashraf M. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res. 2006;98:1414–21. https://doi.org/10.1161/01.RES.0000225952.61196.39.

Article  CAS  Google Scholar 

Williams AR, Hare JM. Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res. 2011;109:923–40.

Article  CAS  Google Scholar 

Kumar BM, Maeng GH, Lee YM, et al. Neurogenic and cardiomyogenic differentiation of mesenchymal stem cells isolated from minipig bone marrow. Res Vet Sci. 2012;93:749–57. https://doi.org/10.1016/j.rvsc.2011.09.012.

Article  CAS  Google Scholar 

Laflamme MA, Murry CE. Regenerating the heart. Nat Biotechnol. 2005;23:845–56. https://doi.org/10.1038/nbt1117.

Article  CAS  Google Scholar 

Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther. 2016;7:1–25.

Article  CAS  Google Scholar 

Li XH, Yu XY, Lin QX, et al. Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment. J Mol Cell Cardiol. 2007;42:295–303. https://doi.org/10.1016/j.yjmcc.2006.07.002.

Article  CAS  Google Scholar 

Naeem N, Haneef K, Kabir N, et al. DNA methylation inhibitors, 5-azacytidine and zebularine potentiate the transdifferentiation of rat bone marrow mesenchymal stem cells into cardiomyocytes. Cardiovasc Ther. 2013;31:201–9. https://doi.org/10.1111/j.1755-5922.2012.00320.x.

Article  CAS  Google Scholar 

Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999;103:697–705. https://doi.org/10.1172/JCI5298.

Article  CAS  Google Scholar 

Antonitsis P, Ioannidou-Papagiannaki E, Kaidoglou A, Papakonstantinou C. In vitro cardiomyogenic differentiation of adult human bone marrow mesenchymal stem cells. The role of 5-azacytidine. Interact Cardiovasc Thorac Surg. 2007;6:593–7.

Article  Google Scholar 

Ye NS, Chen J, Luo GA, et al. Proteomic profiling of rat bone marrow mesenchymal stem cells induced by 5-azacytidine. Stem Cells Dev. 2006;15:665–76. https://doi.org/10.1089/scd.2006.15.665.

Article  CAS  Google Scholar 

Yung T, Poon F, Liang M, et al. Sufu- and Spop-mediated downregulation of Hedgehog signaling promotes beta cell differentiation through organ-specific niche signals. Nat Commun. 2019;10:4647. https://doi.org/10.1038/s41467-019-12624-5.

Article  CAS  Google Scholar 

Bhavanasi D, Klein PS. Wnt signaling in normal and malignant stem cells. Curr Stem Cell Rep. 2016;2:379–87.

Article  Google Scholar 

Haneef K, Ali A, Khan I, et al. Role of interleukin-7 in fusion of rat bone marrow mesenchymal stem cells with cardiomyocytes in vitro and improvement of cardiac function in vivo. Cardiovasc Ther. 2018;36:1–11. https://doi.org/10.1111/1755-5922.12479.

Article  CAS  Google Scholar 

Khan I, Ali A, Akhter MA, et al. Epac-Rap1-activated mesenchymal stem cells improve cardiac function in rat model of myocardial infarction. Cardiovasc Ther. 2017;35:e12248. https://doi.org/10.1111/1755-5922.12248.

Article  CAS  Google Scholar 

Devine SM, Bartholomew AM, Mahmud N, et al. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol. 2001;29:244–55. https://doi.org/10.1016/S0301-472X(00)00635-4.

Article  CAS  Google Scholar 

Devine SM, Cobbs C, Jennings M, et al. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood. 2003;101:2999–3001. https://doi.org/10.1182/blood-2002-06-1830.

Article  CAS  Google Scholar 

Ali SR, Ahmad W, Naeem N, et al. Small molecule 2’-deoxycytidine differentiates human umbilical cord-derived MSCs into cardiac progenitors in vitro and their in vivo xeno-transplantation improves cardiac function. Mol Cell Biochem. 2020;470:99–113. https://doi.org/10.1007/s11010-020-03750-6.

Article  CAS  Google Scholar 

Khanabdali R, Saadat A, Fazilah M, et al. Promoting effect of small molecules in cardiomyogenic and neurogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Drug Des Devel Ther. 2016;10:81–91. https://doi.org/10.2147/DDDT.S89658.

Article  CAS  Google Scholar 

Karakikes I, Senyei GD, Hansen J, et al. Small molecule-mediated directed differentiation of human embryonic stem cells toward ventricular cardiomyocytes. Stem Cells Transl Med. 2014;3:18–31. https://doi.org/10.5966/sctm.2013-0110.

Article  CAS  Google Scholar 

Ren Y, Lee MY, Schliffke S, et al. Small molecule Wnt inhibitors enhance the efficiency of BMP-4-directed cardiac differentiation of human pluripotent stem cells. J Mol Cell Cardiol. 2011;51:280–7. https://doi.org/10.1016/j.yjmcc.2011.04.012.

Article  CAS  Google Scholar 

Sharma A, Li G, Rajarajan K, et al. Derivation of highly purified cardiomyocytes from human induced pluripotent stem cells using small molecule-modulated differentiation and subsequent glucose starvation. J Vis Exp. 2015;18:e52628. https://doi.org/10.3791/52628-v.

Article  Google Scholar 

Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7. https://doi.org/10.1080/14653240600855905.

Article  CAS  Google Scholar 

Mascotti K, McCullough J, Burger SR. HPC viability measurement: trypan blue versus acridine orange and propidium iodide. Transfus. 2000;40:693–6. https://doi.org/10.1046/j.1537-2995.2000.40060693.x.

Article  CAS  Google Scholar 

Gao Q, Guo M, Jiang X, et al. A cocktail method for promoting cardiomyocyte differentiation from bone marrow-derived mesenchymal stem cells. Stem Cells Int. 2014;2014:1–11. https://doi.org/10.1155/2014/162024.

Article  CAS  Google Scholar 

Schade D, Plowright AT. Medicinal chemistry approaches to heart regeneration. J Med Chem. 2015;58:9451–79. https://doi.org/10.1021/acs.jmedchem.5b00446.

Article  CAS  Google Scholar 

Kim Y, Phan D, Van Rooij E, et al. The MEF2D transcription factor mediates stress-dependent cardiac remodeling in mice. J Clin Invest. 2008;118:124–32. https://doi.org/10.1172/JCI33255.

Article  CAS  Google Scholar 

Chaulin A. Cardiac troponins: contemporary biological data and new methods of determination. Vasc Health Risk Manag. 2021;17:299–316. https://doi.org/10.2147/VHRM.S300002.

Article  Google Scholar 

Qazi R, Naeem N, Khan I, et al. Effect of a dianthin G analogue in the differentiation of rat bone marrow mesenchymal stem cells into cardiomyocytes. Mol Cell Biochem. 2020;475:27–39. https://doi.org/10.1007/s11010-020-03855-y.

Article  CAS  Google Scholar 

van de Schans VAM, Smits JFM, Blankesteijn WM. The Wnt/frizzled pathway in cardiovascular development and disease: friend or foe? Eur J Pharmacol. 2008;585:338–45.

Article  Google Scholar 

Khan I, Ali A, Akhter MA, et al. Preconditioning of mesenchymal stem cells with 2,4-dinitrophenol improves cardiac function in infarcted rats. Life Sci. 2016;162:60–9. https://doi.org/10.1016/j.lfs.2016.08.014.

Article  CAS  Google Scholar 

Kampaktsis PN, Ullal AV, Minutello RM, et al. Impact of paravalvular aortic insufficiency on left ventricular remodeling and mortality after transcatheter aortic valve replacement. J Heart Valve Dis. 2016;25:301–8.

Google Scholar 

Sekaran NK, Crowley AL, de Souza FR, et al. The Role for cardiovascular remodeling in cardiovascular outcomes. Curr Atheroscler Rep. 2017;19:1–11.

Article  Google Scholar 

Marwick TH. Ejection fraction pros and cons: JACC State-of-the-Art Review. J Am Coll Cardiol. 2018;72:2360–79.

Article  Google Scholar 

Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.

Article  CAS  Google Scholar 

Rocha V, Wagner JE, Sobocinski KA, et al. Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. N Engl J Med. 2000;342:1846–54. https://doi.org/10.1056/nejm200006223422501.

Article  CAS  Google Scholar 

Azari MF, Mathias L, Ozturk E, et al. Mesenchymal stem cells for treatment of CNS injury. Curr Neuropharmacol. 2010;8:316–23. https://doi.org/10.2174/157015910793358204.

Article  CAS  Google Scholar 

Sancricca C. Mesenchymal stromal cells from human perinatal tissues: from biology to cell therapy. World J Stem Cells. 2010;2:81. https://doi.org/10.4252/wjsc.v2.i4.81.

Article  Google Scholar 

Ekram S, Khalid S, Bashir I, et al. Human umbilical cord-derived mesenchymal stem cells and their chondroprogenitor derivatives reduced pain and inflammation signaling and promote regeneration in a rat intervertebral disc degeneration model. Mol Cell Biochem. 2021;476:3191–205. https://doi.org/10.1007/s11010-021-04155-9.

Article  CAS  Google Scholar 

Ennis J, Götherström C, Le Blanc K, Davies JE. In vitro immunologic properties of human umbilical cord perivascular cells. Cytotherapy. 2008;10:174–81. https://doi.org/10.1080/14653240801891667.

Article  CAS  Google Scholar 

Weiss ML, Anderson C, Medicetty S, et al. Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells. 2008;26:2865–74. https://doi.org/10.1634/stemcells.2007-1028.

Article 

留言 (0)

沒有登入
gif