Specific vulnerability of iPSC-derived motor neurons with TDP-43 gene mutation to oxidative stress

Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med. 2001;344(22):1688–700.

Article  CAS  PubMed  Google Scholar 

Renton AE, Chiò A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci. 2014;17(1):17–23.

Article  CAS  PubMed  Google Scholar 

Amin A, Perera ND, Beart PM, Turner BJ, Shabanpoor F. Amyotrophic lateral sclerosis and autophagy: dysfunction and therapeutic targeting. Cells. 2020;9(11):1–30.

Article  Google Scholar 

Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front Mol Neurosci. 2019;12(February):1–36.

Google Scholar 

Watanabe S, Kaneko K, Yamanaka K. Accelerated disease onset with stabilized familial amyotrophic lateral sclerosis (ALS)-linked mutant TDP-43 proteins. J Biol Chem. 2013;288(5):3641–54.

Article  CAS  PubMed  Google Scholar 

Ogawa MH, Okano HJ. Characterization of the upstream and intron promoters of the gene encoding TAR DNA-binding protein. Sci Rep. 2021;11(1):8720.

Article  Google Scholar 

Wu LS, Cheng W, Hou SC, Yan YT, Jiang ST, Shen CKJ. TDP-43, a neuro-pathosignature factor, is essential for early mouse embryogenesis. Genesis. 2010;48(1):56–62.

CAS  PubMed  Google Scholar 

Swarup V, Phaneuf D, Bareil C, Robertson J, Rouleau GA, Kriz J, et al. Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. Brain. 2011;134(9):2610–26.

Article  PubMed  Google Scholar 

Huang SL, Wu LS, Lee M, Chang CW, Cheng WC, Fang YS, et al. A robust TDP-43 knock-in mouse model of ALS. Acta Neuropathol Commun. 2020;5:1–19.

Google Scholar 

White MA, Kim E, Duffy A, Adalbert R, Phillips BU, Peters OM, et al. TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD. Nat Neurosci. 2018;21(4):552–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Armstrong GAB, Liao M, You Z, Lissouba A, Chen BE, Drapeau P. Homology directed knockin of point mutations in the zebrafish tardbp and fus genes in ALS using the CRISPR/Cas9 system. PLoS ONE. 2016;11(3):1–10.

Article  Google Scholar 

Fujimori K, Ishikawa M, Otomo A, Atsuta N, Nakamura R, Akiyama T, et al. Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent. Nat Med. 2018;24(10):1579–89. https://doi.org/10.1038/s41591-018-0140-5.

Article  CAS  PubMed  Google Scholar 

Egawa N, Kitaoka S, Tsukita K, Naitoh M, Takahashi K, Yamamoto T, et al. Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med. 2012;4(145):145ra104.

Article  PubMed  Google Scholar 

Yamashita M, Nonaka T, Hirai S, Miwa A, Okado H, Arai T, et al. Distinct pathways leading to TDP-43-induced cellular dysfunctions. Hum Mol Genet. 2014;23(16):4345–56.

Article  CAS  PubMed  Google Scholar 

Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA. 2009;106(44):18809–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kreiter N, Pal A, Lojewski X, Corcia P, Naujock M, Reinhardt P, et al. Age-dependent neurodegeneration and organelle transport deficiencies in mutant TDP43 patient-derived neurons are independent of TDP43 aggregation. Neurobiol Dis. 2017;2018(115):167–81.

Google Scholar 

Ichiyanagi N, Fujimori K, Yano M, Ishihara-Fujisaki C, Sone T, Akiyama T, et al. Establishment of in vitro FUS-associated familial amyotrophic lateral sclerosis model using human induced pluripotent stem cells. Stem Cell Rep. 2016;6(4):496–510.

Article  CAS  Google Scholar 

Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008;321(5893):1218–21.

Article  CAS  PubMed  Google Scholar 

Cai S, Han L, Ao Q, Chan YS, Shum DKY. Human induced pluripotent cell-derived sensory neurons for fate commitment of bone marrow-derived Schwann cells: implications for remyelination therapy. Stem Cells Transl Med. 2017;6(2):369–81.

Article  CAS  PubMed  Google Scholar 

Oki R, Izumi Y, Fujita K, Miyamoto R, Nodera H, Sato Y, et al. Efficacy and safety of ultrahigh-dose methylcobalamin in early-stage amyotrophic lateral sclerosis: a randomized clinical trial. JAMA Neurol. 2022;79(6):575–83.

Article  PubMed  PubMed Central  Google Scholar 

Imamura K, Izumi Y, Nagai M, Nishiyama K, Watanabe Y, Hanajima R, et al. Safety and tolerability of bosutinib in patients with amyotrophic lateral sclerosis (iDReAM study): a multicentre, open-label, dose-escalation phase 1 trial. EClinicalMedicine. 2022;53: 101707.

Article  PubMed  PubMed Central  Google Scholar 

Morimoto S, Takahashi S, Ito D, Daté Y, Okada K, Kato C, et al. Phase 1/2a clinical trial in ALS with ropinirole, a drug candidate identified by iPSC drug discovery. Cell Stem Cell. 2023;30(6):766-780.e9.

Article  CAS  PubMed  Google Scholar 

Burkhardt MF, Martinez FJ, Wright S, Ramos C, Volfson D, Mason M, et al. A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol Cell Neurosci. 2013;56:355–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alves CJ, Dariolli R, Jorge FM, Monteiro MR, Maximino JR, Martins RS, et al. Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration. Front Cell Neurosci. 2015;9:1–25.

Article  Google Scholar 

Okano H, Morimoto S. iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders. Cell Stem Cell. 2022;29(2):189–208.

Article  CAS  PubMed  Google Scholar 

Deneault E, Chaineau M, Nicouleau M, Castellanos Montiel MJ, Franco Flores AK, Haghi G, et al. A streamlined CRISPR workflow to introduce mutations and generate isogenic iPSCs for modeling amyotrophic lateral sclerosis. Methods. 2022;203:297–310.

Article  CAS  PubMed  Google Scholar 

Kim BW, Ryu J, Jeong YE, Kim J, Martin LJ. Human motor neurons with SOD1-G93A mutation generated from CRISPR/Cas9 gene-edited iPSCs develop pathological features of amyotrophic lateral sclerosis. Front Cell Neurosci. 2020;14:1–16.

Article  Google Scholar 

Hammad M, Silva A, Glass J, Sladky JT, Benatar M. Clinical, electrophysiologic, and pathologic evidence for sensory abnormalities in ALS. Neurology. 2007;69(24):2236–42.

Article  CAS  PubMed  Google Scholar 

Geser F, Brandmeir NJ, Kwong LK, Martinez-Lage M, Elman L, McCluskey L, et al. Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch Neurol. 2008;65(5):636–41.

Article  PubMed  Google Scholar 

Dalla Bella E, Lombardi R, Porretta-Serapiglia C, Ciano C, Gellera C, Pensato V, et al. Amyotrophic lateral sclerosis causes small fiber pathology. Eur J Neurol. 2016;23(2):416–20.

Article  CAS  PubMed  Google Scholar 

Rubio MA, Herrando-Grabulosa M, Navarro X. Sensory involvement in amyotrophic lateral sclerosis. Int J Mol Sci. 2022;23:15521.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vaughan SK, Sutherland NM, Zhang S, Hatzipetros T, Vieira F, Valdez G. The ALS-inducing factors, TDP43A315T and SOD1G93A, directly affect and sensitize sensory neurons to stress. Sci Rep. 2018;8(1):1–12.

Article  Google Scholar 

Li Q, Feng Y, Xue Y, Zhan X, Fu Y, Gui G, et al. Edaravone activates the GDNF/RET neurotrophic signaling pathway and protects mRNA-induced motor neurons from iPS cells. Mol Neurodegener. 2022;17(1):8.

Article  PubMed  PubMed Central  Google Scholar 

Lee SH, Choi NY, Yu HJ, Park J, Choi H, Lee KY, et al. Atorvastatin protects NSC-34 motor neurons against oxidative stress by activating PI3K, ERK and free radical scavenging. Mol Neurobiol. 2016;53(1):695–705.

Article  CAS  PubMed  Google Scholar 

Richardson K, Allen SP, Mortiboys H, Grierson AJ, Wharton SB, Ince PG, et al. The effect of SOD1 mutation on cellular bioenergetic profile and viability in response to oxidative stress and influence of mutation-type. PLoS ONE. 2013;8(6): e68256.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dukkipati SS, Garrett TL, Elbasiouny SM. The vulnerability of spinal motoneurons and soma size plasticity in a mouse model of amyotrophic lateral sclerosis. J Physiol. 2018;596(9):1723–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Von Lewinski F, Keller BU. Ca2+, mitochondria and selective motoneuron vulnerability: implications for ALS. Trends Neurosci. 2005;28(9):494–500.

Article  Google Scholar 

Alexianu ME, Ho BK, Mohamed AH, La Bella V, Smith RG, Appel SH. The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol. 1994;36(6):846–58.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif