Strategies for acquisition of resonance assignment spectra of highly dynamic membrane proteins: a GPCR case study

Ahuja S et al (2009) Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Nat Struct Mol Biol 16:168–175

Article  Google Scholar 

Alonso B, Massiot D (2003) Multi-scale NMR characterisation of mesostructured materials using 1H–>13C through-bond polarisation transfer, fast MAS, and 1H spin diffusion. J Magn Reson 163:347–352

Article  ADS  Google Scholar 

Baldus M, Petkova A, Herzfeld J, Griffin R (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95:1197–1207

Article  ADS  Google Scholar 

Banigan J, Gayen A, Traaseth N (2015) Correlating lipid bilayer fluidity with sensitivity and resolution of polytopic membrane protein spectra by solid-state NMR spectroscopy. BBA-Biomembranes 1848:334–341

Article  Google Scholar 

Bloch F (1946) Nuclear Induction: 460–474 (Physical Review).

Borcik CG, Versteeg DB, Wylie BJ (2019) An inward-rectifier potassium channel coordinates the properties of biologically derived membranes. Biophys J 116:1701–1718

Article  Google Scholar 

Borcik CG et al (2020) The lipid activation mechanism of a transmembrane potassium channel. J Am Chem Soc 142:14102–14116

Article  Google Scholar 

Daviso E, Eddy M, Andreas L, Griffin R, Herzfeld J (2013) Efficient resonance assignment of proteins in MAS NMR by simultaneous intra- and inter-residue 3D correlation spectroscopy. J Biomol NMR 55:257–265

Article  Google Scholar 

De Paëpe G et al (2003) Transverse dephasing optimized solid-state NMR spectroscopy. J Am Chem Soc 125:13938–13939

Article  Google Scholar 

Delaglio F et al (1995) NMRPipe- A multidimensinoal spectral processing system based on Unix Pipes. J Biomol NMR 6:277–293

Article  Google Scholar 

Do HQ et al (2021) Cross-seeding between the functional amyloidogenic CRES and CRES3 family members and their regulation of Aβ assembly. J Biol Chem 296:100250

Article  Google Scholar 

Elena B, Lesage A, Steuernagel S, Böckmann A, Emsley L (2005) Proton to carbon-13 INEPT in solid-state NMR spectroscopy. J Am Chem Soc 127:17296–17302

Article  Google Scholar 

Fung B, Khitrin A, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101

Article  ADS  Google Scholar 

Gelenter M et al (2021) Water orientation and dynamics in the closed and open influenza B virus M2 proton channels. Commun Biol. https://doi.org/10.1038/s42003-021-01847-2

Article  Google Scholar 

Ghosh U, Weliky DP (2021) Rapid 2H NMR transverse relaxation of perdeuterated lipid acyl chains of membrane with bound viral fusion peptide supports large-amplitude motions of these chains that can catalyze membrane fusion. Biochemistry 60:2637–2651

Article  Google Scholar 

Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 62:7512–7515

Article  Google Scholar 

Guan X, Stark RE (2010) A general protocol for temperature calibration of MAS NMR probes at arbitrary spinning speeds. Solid State Nucl Magn Reson 38:74–76

Article  Google Scholar 

Guo W, Hamilton JA (1995) A multinuclear solid-state NMR study of phospholipid-cholesterol interactions: dipalmitoylphosphatidylcholine-cholesterol binary system. Biochemistry 34:14174–14184

Article  Google Scholar 

Helmus J, Jaroniec C (2013) Nmrglue: an open source python package for the analysis of multidimensional NMR data. J Biomol NMR 55:355–367

Article  Google Scholar 

Howarth GS, McDermott AE (2020) High-resolution magic angle spinning NMR of KcsA in liposomes: the highly mobile C-terminus. Biomolecules 12

Hu Y et al (2021) NMR-based methods for protein analysis. Anal Chem 93:1866–1879

Article  Google Scholar 

Jekhmane S et al (2019) Shifts in the selectivity filter dynamics cause modal gating in K+ channels. Nat Commun 10:123

Article  ADS  Google Scholar 

Joedicke L et al (2018) The molecular basis of subtype selectivity of human kinin G-protein-coupled receptors. Nat Chem Biol 14:284–290

Article  Google Scholar 

Kimata N et al (2016a) Free backbone carbonyls mediate rhodopsin activation. Nat Struct Mol Biol 23:738–743

Article  Google Scholar 

Kimata N et al (2016b) Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation. Nat Commun 7:12683

Article  ADS  Google Scholar 

Kneller D, Kuntz I (1993) UCSF SPARKY—an NMR display, annotation and assignment tool. J Cell Biochem:254–254

Krug U et al (2020) The conformational equilibrium of the neuropeptide Y2 receptor in bilayer membranes. Angew Chem Int Ed Engl 59:23854–23861

Article  Google Scholar 

Krushelnitsky A, Reichert D, Saalwächter K (2013) Solid-state NMR approaches to internal dynamics of proteins: from picoseconds to microseconds and seconds. Acc Chem Res 46:2028–2036

Article  Google Scholar 

Kubatova N et al (2020) Light dynamics of the retinal-disease-relevant G90D bovine rhodopsin mutant. Angew Chem Int Ed Engl 59:15656–15664

Article  Google Scholar 

Lee W, Tonelli M, Markley J (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31:1325–1327

Article  Google Scholar 

Lu J et al (2013) Molecular structure of beta-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154:1257–1268

Article  Google Scholar 

Maciejewski MW et al (2017) NMRbox: a resource for biomolecular NMR computation. Biophys J 112:1529–1534

Article  Google Scholar 

Mertz B, Struts AV, Feller SE, Brown MF (2012) Molecular simulations and solid-state NMR investigate dynamical structure in rhodopsin activation. Biochim Biophys Acta 1818:241–251

Article  Google Scholar 

Morcombe C, Zilm K (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162:479–486

Article  ADS  Google Scholar 

Nowacka A, Mohr P, Norrman J, Martin R, Topgaard D (2010) Polarization transfer solid-state NMR for studying surfactant phase behavior. Langmuir 26:16848–16856

Article  Google Scholar 

Nowacka A, Bongartz NA, Ollila OHS, Nylander T, Topgaard D (2013) Signal intensities in H-1-C-13 CP and INEPT MAS NMR of liquid crystals. J Magn Reson 230:165–175

Article  ADS  Google Scholar 

Park S et al (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491:779+

Article  ADS  Google Scholar 

Pines A, Waugh J, Gibby M (1972) Proton-enhanced nuclear induction spectroscopy—method for high-resolution NMR of dilute spins in solids. J Chem Phys 56:1776–2000

Article  ADS  Google Scholar 

Quinn C, McDermott A (2012) Quantifying conformational dynamics using solid-state R-1 rho experiments. J Magn Reson 222:1–7

Article  ADS  Google Scholar 

Ray AP, Thakur N, Pour NG, Eddy MT (2023) Dual mechanisms of cholesterol-GPCR interactions that depend on membrane phospholipid composition. Structure 31:836–847

Article  Google Scholar 

Schaefer J, McKay R, Stejskal E (1979) Double-cross-polarization NMR of solids. J Magn Reson 34:443–447

ADS  Google Scholar 

Schanda P, Ernst M (2016) Studying dynamics by magic-angle spinning solid-state NMR spectroscopy: principles and applications to biomolecules. Prog Nucl Magn Reson Spectrosc 96:1–46

Article  ADS  Google Scholar 

Schwieters C, Kuszewski J, Tjandra N, Clore G (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73

Article  ADS  Google Scholar 

Schwieters C, Kuszewski J, Clore G (2006) Using Xplor-NIH for NMR molecular structure determination. Prog Nucl Magn Reson Spectrosc 48:47–62

Article  Google Scholar 

Sperling L, Berthold D, Sasser T, Jeisy-Scott V, Rienstra C (2010) Assignment strategies for large proteins by magic-angle spinning NMR: The 21-kDa disulfide-bond-forming enzyme DsbA. J Mol Biol 399:268–282

Article  Google Scholar 

Struts AV, Salgado GF, Martínez-Mayorga K, Brown MF (2011a) Retinal dynamics underlie its switch from inverse agonist to agonist during rhodopsin activation. Nat Struct Mol Biol 18:392–394

Article  Google Scholar 

Struts AV, Salgado GF, Brown MF (2011b) Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin. Proc Natl Acad Sci USA 108:8263–8268

Article  ADS  Google Scholar 

Takegoshi K, Nakamura S, Terao T (2001) C-13-H-1 dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637

Article  ADS  Google Scholar 

Thakur N et al (2023) Anionic phospholipids control mechanisms of GPCR-G protein recognition. Nat Commun 14:794

Article  ADS  Google Scholar 

Thiessen AN, Verbeek W, Gritter K, Ooms KJ (2018) Assessment of the sensitivity of DQF/ZQF 2H NMR of D2O for studying modified nafion membranes at 20 °C and 80 °C. Solid State Nucl Magn Reson 93:1–6

Article  Google Scholar 

Tuttle M et al (2016) Solid-state NMR structure of a pathogenic fibril of full-length human alpha-synuclein. Nat Struct Mol Biol 23:409–415

Article  Google Scholar 

van Aalst EJ, Wylie BJ (2021) Cholesterol is a dose-dependent positive allosteric modulator of CCR3 ligand affinity and G protein coupling. Front Mol Biosci 8:718

Google Scholar 

van Aalst E, Koneri J, Wylie B (2021) In silico identification of cholesterol binding motifs in the chemokine receptor CCR3. Membranes 11:570

Article  Google Scholar 

van Aalst EJ, Borcik CG, Wylie BJ (2022) Spectroscopic signatures of bilayer ordering in native biological membranes. Biochim Biophys Acta Biomembr 1864:183891

Article 

留言 (0)

沒有登入
gif