Reconstitution and resonance assignments of yeast OST subunit Ost4 and its critical mutant Ost4V23D in liposomes by solid-state NMR

Bai L, Wang T, Zhao G, Kovach A, Li H (2018) The atomic structure of a eukaryotic oligosaccharyltransferase complex. Nature 555(7696):328–333. https://doi.org/10.1038/nature25755

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Brown MF (1994) Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids 73(1–2):159–180. https://doi.org/10.1016/0009-3084(94)90180-5

Article  CAS  PubMed  Google Scholar 

Carman GM, Han GS (2009) Regulation of phospholipid synthesis in yeast. J Lipid Res 50(Suppl):S69–S73. https://doi.org/10.1194/jlr.R800043-JLR200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaudhary B, Mazumder S, Mohanty S (2017) Production and biophysical characterization of a mini-membrane protein, Ost4V23D: a functionally important mutant of yeast oligosaccharyltransferase subunit Ost4p. Protein Expr Purif 139:43–48. https://doi.org/10.1016/j.pep.2017.07.009

Article  CAS  PubMed  Google Scholar 

Chaudhary BP, Zoetewey D, Mohanty S (2020) 1H, 13C, 15N resonance assignments and secondary structure of yeast oligosaccharyltransferase subunit Ost4 and its functionally important mutant Ost4V23D. Biomol NMR Assign 14(2):205–209. https://doi.org/10.1007/s12104-020-09946-7

Article  CAS  PubMed  Google Scholar 

Chaudhary BP, Zoetewey DL, McCullagh MJ, Mohanty S (2021) NMR and MD simulations reveal the impact of the V23D mutation on the function of yeast oligosaccharyltransferase subunit Ost4. Glycobiology 31(7):838–850. https://doi.org/10.1093/glycob/cwab002

Article  CAS  PubMed  Google Scholar 

Cherepanova N, Shrimal S, Gilmore R (2016) N-linked glycosylation and homeostasis of the endoplasmic reticulum. Curr Opin Cell Biol 41:57–65. https://doi.org/10.1016/j.ceb.2016.03.021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chi JH, Roos J, Dean N (1996) The OST4 gene of Saccharomyces cerevisiae encodes an unusually small protein required for normal levels of oligosaccharyltransferase activity. J Biol Chem 271(6):3132–3140. https://doi.org/10.1074/jbc.271.6.3132

Article  CAS  PubMed  Google Scholar 

Das N, Murray DT, Cross TA (2013) Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples. Nat Protoc 8(11):2256–2270. https://doi.org/10.1038/nprot.2013.129

Article  CAS  PubMed  PubMed Central  Google Scholar 

Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293. https://doi.org/10.1007/BF00197809

Article  CAS  PubMed  Google Scholar 

Dempski RE, Imperiali B (2002) Oligosaccharyl transferase: gatekeeper to the secretory pathway. Curr Opin Chem Biol 6(6):844–850. https://doi.org/10.1016/s1367-5931(02)00390-3

Article  CAS  PubMed  Google Scholar 

Epand RM, Lester DS (1990) The role of membrane biophysical properties in the regulation of protein kinase C activity. Trends Pharmacol Sci 11(8):317–320. https://doi.org/10.1016/0165-6147(90)90234-y

Article  CAS  PubMed  Google Scholar 

Escribá PV, Ozaita A, Ribas C, Miralles A, Fodor E, Farkas T, García-Sevilla JA (1997) Role of lipid polymorphism in G protein-membrane interactions: nonlamellar-prone phospholipids and peripheral protein binding to membranes. Proc Natl Acad Sci U S A 94(21):11375–11380. https://doi.org/10.1073/pnas.94.21.11375

Article  ADS  PubMed  PubMed Central  Google Scholar 

Franks WT, Kloepper KD, Wylie BJ, Rienstra CM (2007) Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins. J Biomol NMR 39(2):107–131. https://doi.org/10.1007/s10858-007-9179-1

Article  CAS  PubMed  Google Scholar 

Freeze HH (2013) Understanding human glycosylation disorders: biochemistry leads the charge. J Biol Chem 288(10):6936–6945. https://doi.org/10.1074/jbc.R112.429274

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gahmberg CG, Tolvanen M (1996) Why mammalian cell surface proteins are glycoproteins. Trends Biochem Sci 21(8):308–311

Article  CAS  PubMed  Google Scholar 

Gayen S, Kang C (2011) Solution structure of a human minimembrane protein Ost4, a subunit of the oligosaccharyltransferase complex. Biochem Biophys Res Commun 409(3):572–576. https://doi.org/10.1016/j.bbrc.2011.05.050

Article  CAS  PubMed  Google Scholar 

Gopinath T, Weber D, Wang S, Larsen E, Veglia G (2021) Solid-state NMR of membrane proteins in lipid bilayers: to spin or not to spin? Acc Chem Res 54(6):1430–1439. https://doi.org/10.1021/acs.accounts.0c00670

Article  CAS  PubMed  Google Scholar 

Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049. https://doi.org/10.1146/annurev.biochem.73.011303.073752

Article  CAS  PubMed  Google Scholar 

Henderson CM, Block DE (2014) Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae. Appl Environ Microbiol 2966–2972. https://doi.org/10.1128/AEM.04151-13

Hennet T, Cabalzar J (2015) Congenital disorders of glycosylation: a concise chart of glycocalyx dysfunction. Trends Biochem Sci 40(7):377–384. https://doi.org/10.1016/j.tibs.2015.03.002

Article  CAS  PubMed  Google Scholar 

Huang C, Bhaskaran R, Mohanty S (2012) Eukaryotic N-glycosylation occurs via the membrane-anchored C-terminal domain of the Stt3p subunit of oligosaccharyltransferase. J Biol Chem 287(39):32450–32458. https://doi.org/10.1074/jbc.M112.342253

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karaoglu D, Kelleher DJ, Gilmore R (1997) The highly conserved Stt3 protein is a subunit of the yeast oligosaccharyltransferase and forms a subcomplex with Ost3p and Ost4p. J Biol Chem 272(51):32513–32520. https://doi.org/10.1074/jbc.272.51.32513

Article  CAS  PubMed  Google Scholar 

Kelleher DJ, Gilmore R (2006) An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16(4):47R–62. https://doi.org/10.1093/glycob/cwj066. R

Article  CAS  PubMed  Google Scholar 

Kim H, Park H, Montalvo L, Lennarz WJ (2000) Studies on the role of the hydrophobic domain of Ost4p in interactions with other subunits of yeast oligosaccharyl transferase. Proc Natl Acad Sci U S A 97(4):1516–1520. https://doi.org/10.1073/pnas.040556797

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Kim H, Yan Q, Von Heijne G, Caputo GA, Lennarz WJ (2003) Determination of the membrane topology of Ost4p and its subunit interactions in the oligosaccharyltransferase complex in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 100(13):7460–7464. https://doi.org/10.1073/pnas.1332735100

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Knauer R, Lehle L (1999) The oligosaccharyltransferase complex from yeast. Biochim Biophys Acta 1426(2):259–273. https://doi.org/10.1016/s0304-4165(98)00128-7

Article  CAS  PubMed  Google Scholar 

Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664. https://doi.org/10.1146/annurev.bi.54.070185.003215

Article  CAS  PubMed  Google Scholar 

Kumar A, Ward P, Katre UV, Mohanty S (2012) A novel and simple method of production and biophysical characterization of a mini-membrane protein, Ost4p: a subunit of yeast oligosaccharyl transferase. Biopolymers 97(7):499–507. https://doi.org/10.1002/bip.22028

Article  CAS  PubMed  PubMed Central  Google Scholar 

Larkin A, Imperiali B (2011) The expanding horizons of asparagine-linked glycosylation. Biochemistry 50(21):4411–4426. https://doi.org/10.1021/bi200346n

Article  CAS  PubMed  Google Scholar 

Marsh JA, Singh VK, Jia Z, Forman-Kay JD (2006) Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation. Protein Sci 15(12):2795–2804. https://doi.org/10.1110/ps.062465306

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohanty S, Chaudhary BP, Zoetewey D (2020) Structural insight into the mechanism of. Biomolecules 10(4). https://doi.org/10.3390/biom10040624

Monje-Galvan V, Klauda JB (2015) Modeling yeast organelle membranes and how lipid diversity influences Bilayer Properties. Biochemistry 54(45):6852–6861. https://doi.org/10.1021/acs.biochem.5b00718

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif