Fluorine labelling for in situ 19F NMR in oriented systems

The focus of this project is to take advantage of the large NMR chemical shift anisotropy of 19F to determine the orientation of fluorine labeled biomolecules in situ in oriented biological systems such as muscle. The difficulty with a single fluorine atom is that the orientation determined from a chemical shift is not singlevalued in the case of a fully anisotropic chemical shift tensor. The utility of a labeling approach with two fluorine labels in a fixed molecular framework where one of the labels has an axially symmetric chemical shift anisotropy such as a CF3 group and the other has a fully asymmetric chemical shift anisotropy such as 5-fluorotryptophan is evaluated. The result is that the orientation of the label can be determined straightforwardly from a single one-dimensional 19F NMR spectrum. The potential applications are widespread and not limited to biological applications.

留言 (0)

沒有登入
gif