Potential of Quercetin to Protect Cadmium Induced Cognitive Deficits in Rats by Modulating NMDA-R Mediated Downstream Signaling and PI3K/AKT—Nrf2/ARE Signaling Pathways in Hippocampus

Abdalla, F. H., Schmatz, R., Cardoso, A. M., Carvalho, F. B., Baldissarelli, J., de Oliveira, J. S., Rosa, M. M., Nunes, M. A. G., Rubin, M. A., da Cruz, I. B., & Barbisan, F. (2014). Quercetin protects the impairment of memory and anxiogenic-like behavior in rats exposed to cadmium: Possible involvement of the acetylcholinesterase and Na(+), K(+)-ATPase activities. Physiology an Behav, 135, 152–167. https://doi.org/10.1016/j.physbeh.2014.06.008

Article  CAS  Google Scholar 

Agnihotri, S. K., & Kesari, K. K. (2019). Mechanistic effect of heavy metals in neurological disorder and brain cancer. Networking of Mutagens in Environmental Toxicology. https://doi.org/10.1007/978-3-319-96511-6_2

Article  Google Scholar 

Ahmed, S., Kwatra, M., Gawali, B., Panda, S. R., & Naidu, V. G. M. (2021). Potential role of TrkB agonist in neuronal survival by promoting CREB/BDNF and PI3K/Akt signaling in vitro and in vivo model of 3-nitropropionic acid (3-NP)-induced neuronal death. Apoptosis, 26(1–2), 52–70. https://doi.org/10.1007/s10495-020-01645-x

Article  CAS  PubMed  Google Scholar 

Akinyemi, A. J., & Adeniyi, P. A. (2018). Effect of essential oils from ginger (Zingiber officinale) and turmeric (Curcuma longa) rhizomes on some inflammatory biomarkers in cadmium induced neurotoxicity in rats. Journal of Toxicology, 2018, 4109491. https://doi.org/10.1155/2018/4109491

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alnahdi, H. S., & Sharaf, I. A. (2019). Possible prophylactic effect of omega-3 fatty acids on cadmium-induced neurotoxicity in rats’ brains. Environmental Science and Pollution Research International, 26(30), 31254–31262. https://doi.org/10.1007/s11356-019-06259-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anand David, A. V., Arulmoli, R., & Parasuraman, S. (2016). Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacognosy Reviews, 10(20), 84–89. https://doi.org/10.4103/0973-7847.194044

Article  PubMed  PubMed Central  Google Scholar 

Andrade, V. M., Aschner, M., & Marreilha Dos Santos, A. P. (2017). Neurotoxicity of metal mixtures. Neurotoxicity of Metals, 18, 227–265. https://doi.org/10.1007/978-3-319-60189-2_12

Article  CAS  Google Scholar 

Ashrafizadeh, M., Ahmadi, Z., Farkhondeh, T., & Samarghandian, S. (2020). Back to nucleus: combating with cadmium toxicity using Nrf2 signaling pathway as a promising therapeutic target. Biological Trace Element Research, 197(1), 52–62. https://doi.org/10.1007/s12011-019-01980-4

Article  CAS  PubMed  Google Scholar 

Babaei, F., Mirzababaei, M., & Nassiri-Asl, M. (2018). Quercetin in food: Possible mechanisms of its effect on memory. Journal of Food Science, 83(9), 2280–2287. https://doi.org/10.1111/1750-3841.14317

Article  CAS  PubMed  Google Scholar 

Bakulski, K. M., Seo, Y. A., Hickman, R. C., Brandt, D., Vadari, H. S., Hu, H., et al. (2020). Heavy metals exposure and Alzheimer’s disease and related dementias. Journal of Alzheimer’s Disease, 76(4), 1215–1242. https://doi.org/10.3233/jad-200282

Article  CAS  PubMed  Google Scholar 

Bancroft, J. D., & Gamble, M. (2008). Theory and practice of histological techniques. Elsevier.

Google Scholar 

Bardestani, A., Ebrahimpour, S., Esmaeili, A., & Esmaeili, A. (2021). Quercetin attenuates neurotoxicity induced by iron oxide nanoparticles. J Nanobiotechnology, 19(1), 327. https://doi.org/10.1186/s12951-021-01059-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ben Mimouna, S., Le Charpentier, T., Lebon, S., Van Steenwinckel, J., Messaoudi, I., & Gressens, P. (2019). Involvement of the synapse-specific zinc transporter ZnT3 in cadmium-induced hippocampal neurotoxicity. Journal of Cellular Physiology. https://doi.org/10.1002/jcp.28245

Article  PubMed  Google Scholar 

Braun, J. B., Ruchel, J. B., Adefegha, S. A., Coelho, A. P. V., Trelles, K. B., Signor, C., Rubin, M. A., Oliveira, J. S., Dornelles, G. L., de Andrade, C. M., & Castilhos, L. G. (2017). Neuroprotective effects of pretreatment with quercetin as assessed by acetylcholinesterase assay and behavioral testing in poloxamer-407 induced hyperlipidemic rats. Biomedicine & Pharmacotherapy, 88, 1054–1063. https://doi.org/10.1016/j.biopha.2017.01.134

Article  CAS  Google Scholar 

Buendia, I., Michalska, P., Navarro, E., Gameiro, I., Egea, J., & León, R. (2016). Nrf2-ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacology & Therapeutics, 157, 84–104. https://doi.org/10.1016/j.pharmthera.2015.11.003

Article  CAS  Google Scholar 

Chakraborty, J., Singh, R., Dutta, D., Naskar, A., Rajamma, U., & Mohanakumar, K. P. (2014). Quercetin improves behavioral deficiencies, restores astrocytes and microglia, and reduces serotonin metabolism in 3-nitropropionic acid-induced rat model of Huntington's Disease. CNS Neuroscience & Therapeutics, 20(1), 10–19. https://doi.org/10.1111/cns.12189

Article  CAS  Google Scholar 

Chen, P., Miah, M. R., & Aschner, M. (2016). Metals and neurodegeneration. F1000REsEarch. https://doi.org/10.12688/f1000research.7431.1

Article  PubMed  PubMed Central  Google Scholar 

Choubey, P., Kwatra, M., Pandey, S. N., Kumar, D., Dwivedi, D. K., Rajput, P., Mishra, A., Lahkar, M., & Jangra, A. (2019). Ameliorative effect of fisetin against lipopolysaccharide and restraint stress-induced behavioral deficits via modulation of NF-κB and IDO-1. Psychopharmacology (berl), 236(2), 741–752. https://doi.org/10.1007/s00213-018-5105-3

Article  CAS  PubMed  Google Scholar 

Ciesielski, T., Weuve, J., Bellinger, D. C., Schwartz, J., Lanphear, B., & Wright, R. O. (2012). Cadmium exposure and neurodevelopmental outcomes in U.S. children. Environmental Health Perspectives, 120(5), 758–763. https://doi.org/10.1289/ehp.1104152

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dajas, F., Abin-Carriquiry, J. A., Arredondo, F., Blasina, F., Echeverry, C., Martínez, M., Rivera, F., & Vaamonde, L. (2015). Quercetin in brain diseases: Potential and limits. Neurochemistry International, 89, 140–148. https://doi.org/10.1016/j.neuint.2015.07.002

Article  CAS  PubMed  Google Scholar 

Dhuriya, Y. K., Srivastava, P., Shukla, R. K., Gupta, R., Singh, D., Parmar, D., Pant, A. B., & Khanna, V. K. (2017). Prenatal exposure to lambda-cyhalothrin impairs memory in developing rats: Role of NMDA receptor induced post-synaptic signalling in hippocampus. Neurotoxicology, 62, 80–91. https://doi.org/10.1016/j.neuro.2017.04.011

Article  CAS  PubMed  Google Scholar 

Dong, F., Wang, S., Wang, Y., Yang, X., Jiang, J., Wu, D., Qu, X., Fan, H., & Yao, R. (2017). Quercetin ameliorates learning and memory via the Nrf2-ARE signaling pathway in d-galactose-induced neurotoxicity in mice. Biochemical and Biophysical Research Communications, 491(3), 636–641.

Article  CAS  PubMed  Google Scholar 

Fang, X., Yu, S. X., Lu, Y., Bast, R. C., Jr., Woodgett, J. R., & Mills, G. B. (2000). Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proceedings of the National Academy of Sciences USA, 97(22), 11960–11965. https://doi.org/10.1073/pnas.220413597

Article  CAS  Google Scholar 

Gamache, T. R., Araki, Y., & Huganir, R. L. (2020). Twenty years of SynGAP research: From synapses to cognition. Journal of Neuroscience, 40(8), 1596–1605. https://doi.org/10.1523/jneurosci.0420-19.2020

Article  CAS  PubMed  Google Scholar 

García-Esquinas, E., Carrasco-Rios, M., Navas-Acien, A., Ortolá, R., & Rodríguez-Artalejo, F. (2020). Cadmium exposure is associated with reduced grip strength in US adults. Environmental Research, 180, 108819. https://doi.org/10.1016/j.envres.2019.108819

Article  CAS  PubMed  Google Scholar 

Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The Effects of Cadmium Toxicity. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph17113782

Article  PubMed  PubMed Central  Google Scholar 

Glowinski, J., & Iversen, L. (1966). Regional studies of catecholamines in the rat brain—III: Subcellullar distribution of endogenous and exogenous catecholamines in various brain regions. Biochemical Pharmacology, 15(7), 977–987.

Article  CAS  PubMed  Google Scholar 

Gonçalves, J. F., Dressler, V. L., Assmann, C. E., Morsch, V. M. M., & Schetinger, M. R. C. (2021). Cadmium neurotoxicity: From its analytical aspects to neuronal impairment. Advances in Neurotoxicology (Vol. 5, pp. 81–113). Elsevier.

Google Scholar 

Grewal, A. K., Singh, T. G., Sharma, D., Sharma, V., Singh, M., Rahman, M. H., Najda, A., Walasek-Janusz, M., Kamel, M., Albadrani, G. M., & Akhtar, M. F. (2021). Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomedicine & Pharmacotherapy, 140, 111729. https://doi.org/10.1016/j.biopha.2021.111729

Article  CAS  Google Scholar 

Gupta, R., Shukla, R. K., Chandravanshi, L. P., Srivastava, P., Dhuriya, Y. K., Shanker, J., Singh, M. P., Pant, A. B., & Khanna, V. K. (2017). Protective role of quercetin in cadmium-induced cholinergic dysfunctions in rat brain by modulating mitochondrial integrity and MAP kinase signaling. MolEcular NeurobiolOgy, 54(6), 4560–4583. https://doi.org/10.1007/s12035-016-9950-y

Article  CAS  PubMed  Google Scholar 

Gupta, R., Shukla, R. K., Pandey, A., Sharma, T., Dhuriya, Y. K., Srivastava, P., Singh, M. P., Siddiqi, M. I., Pant, A. B., & Khanna, V. K. (2018). Involvement of PKA/DARPP-32/PP1α and β- arrestin/Akt/GSK-3β signaling in cadmium-induced DA-D2 receptor-mediated motor dysfunctions: Protective role of quercetin. SciEntific RepResentative, 8(1), 2528. https://doi.org/10.1038/s41598-018-20342-z

Article  CAS  Google Scholar 

Gustin, K., Tofail, F., Vahter, M., & Kippler, M. (2018). Cadmium exposure and cognitive abilities and behavior at 10 years of age: A prospective cohort study. Environment International, 113, 259–268. https://doi.org/10.1016/j.envint.2018.02.020

Article  CAS  PubMed  Google Scholar 

Islam, M. S., Quispe, C., Hossain, R., Islam, M. T., Al-Harrasi, A., Al-Rawahi, A., Martorell, M., Mamurova, A., Seilkhan, A., Altybaeva, N., & Abdullayeva, B. (2021). Neuropharmacological effects of quercetin: A literature-based review. Frontiers in Pharmacology, 12, 665031. https://doi.org/10.3389/fphar.2021.665031

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jangra, A., Kwatra, M., Singh, T., Pant, R., Kushwah, P., Ahmed, S., Dwivedi, D., Saroha, B., & Lahkar, M. (2016). Edaravone alleviates cisplatin-induced neurobehavioral deficits via modulation of oxidative stress and inflammatory mediators in the rat hippocampus. European Journal of Pharmacology, 791, 51–61. https://doi.org/10.1016/j.ejphar.2016.08.003

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif