Effect of Bone Marrow Mesenchymal Stem Cells on a Short-Term Induced Diabetic Retinopathy in Adult Female Albino Rats

Rübsam A, Parikh S, Fort PE. Role of inflammation in diabetic retinopathy. Int J Mol Sci [Internet]. 2018;19:1–31. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5979417/

AlSawahli H, Mpyet CD, Ezzelarab G, Hassanin I, Shalaby M, Safa O, et al. Population-based cross-sectional prevalence survey of diabetes and diabetic retinopathy in Sohag-Egypt, 2019. BMJ Open. 2021;11:e047757.

Article  Google Scholar 

Stitt PAW, Curtis TM, Chen M, Medina RJ, Mckay GJ, Jenkins A, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res [Internet]. Elsevier Ltd; 2015;51:1–108. Available from: https://doi.org/10.1016/j.preteyeres.2015.08.001

Ovalle W, Nahirney P. Netter’s essential histology. 2nd ed. Elsevier Ltd; 2013

Lieth E, Gardner TW, Barber AJ, Antonetti DA, Penn T, Retina S. Retinal neurodegeneration : early pathology in diabetes. Clin Exp Opthalmology [Internet]. 2000;28:3–8. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1442-9071.2000.00222.x?sid=nlm%3Apubmed

Lai AKW, Lo ACY. Animal models of diabetic retinopathy: summary and comparison. J Diabetes Res [Internet]. 2013;2013:29. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826427/

Lechner J, O’Leary OE, Stitt AW. The pathology associated with diabetic retinopathy. Vision Res [Internet]. Elsevier Ltd; 2017;139:7–14. Available from: https://doi.org/10.1016/j.visres.2017.04.003

Reid E, Guduric-Fuchs J, O’Neill CL, Allen L-D, Chambers SEJ, Stitt AW, et al. Preclinical evaluation and optimization of a cell therapy using human cord blood-derived endothelial colony-forming cells for ischemic retinopathies. Stem Cells Transl Med [Internet]. 2018;7:59–67. Available from: http://doi.wiley.com/10.1002/sctm.17-0187

Hartman GD, Lambert-Cheatham NA, Kelley MR, Corson TW. Molecular sciences inhibition of APE1/Ref-1 for neovascular eye diseases: from biology to therapy. 2021; Available from: https://doi.org/10.3390/ijms221910279

Jones MK, Lu B, Girman S, Wang S. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog Retin Eye Res [Internet]. Elsevier Ltd; 2017;58:1–27. Available from: https://doi.org/10.1016/j.preteyeres.2017.01.004

Qu L, Gao L, Xu H, Duan P, Zeng Y, Liu Y, et al. Combined transplantation of human mesenchymal stem cells and human retinal progenitor cells into the subretinal space of RCS rats. Sci Rep [Internet]. Springer US; 2017;7:199. Available from: http://www.nature.com/articles/s41598-017-00241-5

Mead B, Tomarev S. Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms. Stem Cells [Internet]. 2017;6:1273–85.

CAS  Google Scholar 

Fiori A, Terlizzi V, Kremer H, Gebauer J, Hammes H, Harmsen MC, et al. Mesenchymal stromal / stem cells as potential therapy in diabetic retinopathy. Immunobiology [Internet]. Elsevier; 2018;223:729–43. Available from: https://doi.org/10.1016/j.imbio.2018.01.001

Çerman E, Akkoç T, Eraslan M, Özlem Ş, Özkara S. Retinal electrophysiological effects of intravitreal bone marrow derived mesenchymal stem cells in streptozotocin induced diabetic rats. PLoS One. 2016;11(6):e0156495.

Article  Google Scholar 

Wang J, An Y, Zhang J, Wan X, Jonas JB, Xu L. Human bone marrow mesenchymal stem cells for retinal vascular injury. Acta Opthalmologica [Internet]. 2017;95:453–61. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/aos.13154

Xu Z, Tian N, Li S, Li K, Guo H, Zhang H, et al. Extracellular vesicles secreted from mesenchymal stem cells exert anti-apoptotic and anti-inflammatory effects via transmitting microRNA-18b in rats with diabetic retinopathy. Int Immunopharmacol. 2021;101:108234 (Netherlands).

Article  CAS  Google Scholar 

Hu B, Zhang Y, Zeng Q, Han Q, Zhang L, Liu M, et al. Intravitreal injection of ranibizumab and CTGF shRNA improves retinal gene expression and microvessel ultrastructure in a rodent model of diabetes. Int J Mol Sci [Internet]. 2014;15:1606–24. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907889/

Li L, Li Y lin, Zhou Y feng, Ge Z yan, Wang L li, Li Z qiang, et al. Jiangtang Xiaozhi Recipe () prevents diabetic retinopathy in streptozotocin-induced diabetic rats. Chin J Integr Med [Internet]. 2017;23:425–32. Available from: https://link.springer.com/article/10.1007%2Fs11655-016-2595-x

Dickinson H, Milton P, Jenkin G. The isolation and characterization of putative mesenchymal stem cells from the spiny mouse. Cytotechnology [Internet]. 2012;64:591–9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432532/

Wakitani S, T S, Caplan A. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve [Internet]. 1995;18:1417–26. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/mus.880181212

Basiouny HS, Salama NM, Mohamed Z, Maadawi E, Farag EA. Effect of bone marrow derived mesenchymal stem cells on healing of induced full-thickness skin wounds in albino rat. Int J Stem Cells [Internet]. 2013;6:12–25. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24298370

Tzameret A, Sher I, Belkin M, Treves AJ, Meir A, Nagler A, et al. Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration. Stem Cell Res. 2015;15(2):387–94. https://doi.org/10.1016/j.scr.2015.08.007.

Article  CAS  Google Scholar 

Gholipour MA, Kanavi MR, Ahmadieh H, Aldavood S, Nourinia R, Hosseini S, et al. Original article: intravitreal topotecan inhibits laser - induced choroidal neovascularization in a rat model. J opthalmic Vis Res. 2015;10(3):295–302.

Article  Google Scholar 

Liu H, Zhou S, Denyer G, Meng Z, Chen R, Lv L, et al. Reduced β2glycoprotein I inhibits hypoxia-induced retinal angiogenesis in neonatal mice through the vascular endothelial growth factor pathway. Mol Med Rep [Internet]. 2015;11:1025–30. Available from: https://www.spandidos-publications.com/mmr/11/2/1025

Szabó K, Énzsöly A, Dékány B, Szabó A, Hajdú RI, Mátyás C, et al. Histological evaluation of diabetic neurodegeneration in the retina of Zucker diabetic fatty ( ZDF ) rats. Sci Rep [Internet]. 2017;7:1–17. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566374/

Issa N, El-sherif N. Histological and immunohistochemical studies on the cornea and retina of sofosbuvir treated rats. Austin J Anat [Internet]. 2017;4:1068. Available from: http://austinpublishinggroup.com/anatomy/fulltext/Anatomy-v4-id1068.php

Imbarak N, Abdel-Aziz HI, Farghaly LM, Hosny S. Effect of mesenchymal stem cells versus aloe vera on healing of deep second-degree burn. Stem Cell Investig [Internet]. 2021;8. Available from: https://pubmed.ncbi.nlm.nih.gov/34268441/

Zhang J, Wu Y, Jin Y, Ji F, Sinclair SH, Luo Y, et al. Intravitreal injection of erythropoietin protects both retinal vascular and neuronal cells in early diabetes. Investig Ophthalmol Vis Sci [Internet]. 2008;49:732–42. Available from: https://iovs.arvojournals.org/article.aspx?articleid=2164222

Mcdowell RE, Barabas P, Augustine J, Chevallier O, Mccarron P, Chen M, et al. Müller glial dysfunction during diabetic retinopathy in rats is reduced by the acrolein-scavenging drug , 2-hydrazino-4 , 6-dimethylpyrimidine. Diabetologia [Internet]. Diabetologia; 2018;61:2654–67. Available from: https://doi.org/10.1007/s00125-018-4707-y%0A

Elshaer SL, Evans W, Pentecost M, Lenin R, Periasamy R, Jha KA, et al. Adipose stem cells and their paracrine factors are therapeutic for early retinal complications of diabetes in the Ins2 Akita mouse. Stem Cell Res Ther [Internet]. Stem Cell Res Ther; 2018;9:322. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6249931/

Enzsoly A, Szabo A, Kantor O, David C, Szalay P, Szabo K, et al. Pathologic alterations of the outer retina in streptozotocin-induced diabetes. Investig Ophthalmol Vis Sci [Internet]. 2014;55:3686–99. Available from: https://iovs.arvojournals.org/article.aspx?articleid=2128639

Park S-H, Park J-W, Park S-J, Kim K-Y, Chung J-W, Chun M-H, et al. Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina. Diabetologia [Internet]. Germany; 2003;46:1260–8. Available from: https://link.springer.com/article/10.1007%2Fs00125-003-1177-6

Satari M, Aghadavod E, Mirhosseini N, Asemi Z. The effects of microRNAs in activating neovascularization pathways in diabetic retinopathy. J Cell Biochem [Internet]. 2018;120:9514–21. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcb.28227

Wang M, Wang Y, Xie T, Zhan P, Zou J, Nie X, et al. Prostaglandin E2/EP2 receptor signalling pathway promotes diabetic retinopathy in a rat model of diabetes. Diabetologia [Internet]. Diabetologia; 2019;62:335–48. Available from: https://link.springer.com/article/10.1007%2Fs00125-018-4755-3

Nakahara T, Hoshino M, Hoshino S, Mori A, Sakamoto K. Structural and functional changes in retinal vasculature induced by retinal ischemia-reperfusion in rats. Exp Eye Res [Internet]. Elsevier Ltd; 2015;135:134–45. Available from: https://doi.org/10.1016/j.exer.2015.02.020

Vujosevic S, Midena E. Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Müller cells alterations. J Diabetes Res [Internet]. 2013;2013:1–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694491/

Chen Y, Meng J, Li H, Wei H, Bi F, Liu S, et al. Resveratrol exhibits an effect on attenuating retina inflammatory condition and damage of diabetic retinopathy via PON1. Exp Eye Res [Internet]. Elsevier; 2019;181:356–66. Available from: https://doi.org/10.1016/j.exer.2018.11.023

Daruich A, Matet A, Moulin A, Kowalczuk L, Nicolas M, Sellam A, et al. Mechanisms of macular edema: beyond the surface. Prog Retin Eye Res [Internet]. England; 2018;63:20–68. Available from: https://www.sciencedirect.com/science/article/pii/S1350946217300757?via%3Dihub

Wykoff C. Impact of intravitreal pharmacotherapies including antivascular endothelial growth factor and corticosteroid agents on diabetic retinopathy. Curr Opin Ophthalmol [Internet]. 2017;28:213–218. Available from: https://insights.ovid.com/pubmed?pmid=28376510

Yeh P-T, Huang Y-H, Chang S-W, Wang L-C, Yang C-M, Yang W-S, et al. Cilostazol attenuates retinal oxidative stress and inflammation in a streptozotocin-induced diabetic animal model. Curr Eye Res [Internet]. England; 2019;44:294–302. Available from: https://www.tandfonline.com/doi/abs/10.1080/02713683.2018.1542734?journalCode=icey20

Yang J, Chen C, Mclaughlin T, Wang Y, Le Y, Wang JJ. Loss of X-box binding protein 1 in Müller cells augments retinal inflammation in a mouse model of diabetes. Diabetologia [Internet]. Diabetologia; 2019;62:531–43. Available from: https://link.springer.com/article/10.1007%2Fs00125-018-4776-y

Coughlin BA, Feenstra DJ, Mohr S. Müller cells and diabetic retinopathy. Vision Res [Internet]. 2017;139:93–100. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5794018/

Ashraf M, Souka A, Adelman R. Predicting outcomes to anti-vascular endothelial growth factor (VEGF) therapy in diabetic macular oedema: a review of the literature. Br J Ophthalmol [Internet]. England; 2016;100:1596–604. Available from: https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1136%2Fbjophthalmol-2016-308388

Thomas AA, Biswas S, Feng B, Chen S, Gonder J, Chakrabarti S. lncRNA H19 prevents endothelial – mesenchymal transition in diabetic retinopathy. Diabetologia [Internet]. Springer- Verlag GmbH Germany; 2019;62:517–30. Available from: https://doi.org/10.1007/s00125-018-4797-6/0AARTICLE%0AlncRNA

Mazzeo A, Lopatina T, Gai C, Trento M, Porta M, Beltramo E. Functional analysis of miR-21–3p, miR-30b-5p and miR-150–5p shuttled by extracellular vesicles from diabetic subjects reveals their association with diabetic retinopathy. Exp Eye Res [Internet]. England; 2019;184:56–63. Available from: https://www.sciencedirect.com/science/article/pii/S0014483518308376?via%3Dihub

Yoo J, SS K. Probiotics and prebiotics: present status and future perspectives on metabolic disorders. Nutrients [Internet]. 2016;8:173. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808900/

Zhou T, Che D, Lan Y, Fang Z, Xie J, Gong H. Mesenchymal marker expression is elevated in Müller cells exposed to high glucose and in animal models of diabetic retinopathy. Oncotarget [Internet]. 2017;8:4582–94. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5354856/

Jiao C, Spee C, Mullins RF, Hinton DR. APOPTOSIS AND ANGIOFIBROSIS IN DIABETIC TRACTIONAL MEMBRANES AFTER VASCULAR ENDOTHELIAL GROWTH FACTOR INHIBITION Results of a Prospective Trial . Report No . 2. Retina [Internet]. 2019;39:265–73. Available from: https://insights.ovid.com/pubmed?pmid=29190236

Na L, Xiao-Rong L, Jia-qin Y. Effects of bone-marrow mesenchymal stem cells transplanted into vitreous cavity of rat injured by ischemia/reperfusion. Graefe’s Arch Clin Exp Ophthalmol. 2009;247:503–14.

Article  Google Scholar 

Rajashekhar G. Mesenchymal stem cells: new players in retinopathy therapy. Front Endocrinol (Lausanne) [Internet]. Switzerland; 2014;24:59. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006021/

Safwat A, Sabry D, Ragiae A, Amer E, Mahmoud RH, Shamardan RM. Adipose mesenchymal stem cells-derived exosomes attenuate retina degeneration of streptozotocin-induced diabetes in rabbits. J Circ biomarkers [Internet]. United States; 2018;7:1–10. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6207964/

Kramerov AA, Ljubimov AV. Stem cell therapies in the treatment of diabetic retinopathy and keratopathy. Exp Biol Med (Maywood) [Internet]. England; 2016;241:559–68. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4950324/

Zhang Y, Wang W. Effects of bone marrow mesenchymal stem cell transplantation on light-damaged retina. Invest Ophthalmol Vis Sci [Internet]. United States; 2010;51:3742–8. Available from: https://iovs.arvojournals.org/article.aspx?articleid=2127062

Ezquer M, Urzua CA, Montecino S, Leal K, Conget P, Ezquer F. Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem Cell Res Ther [Internet]. England; 2016;7:42. Available from: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-016-0299-y

da Silva-Junior AJ, Mesentier-Louro LA, Nascimento-Dos-Santos G, Teixeira-Pinheiro LC, Vasques JF, Chimeli-Ormonde L, et al. Human mesenchymal stem cell therapy promotes retinal ganglion cell survival and target reconnection after optic nerve crush in adult rats. Stem Cell Res Ther. 2021;12(1):69. https://doi.org/10.1186/s13287-020-02130-7.

Article  CAS  Google Scholar 

Mathew B, Ravindran S, Liu X, Torres L, Chennakesavalu M, Huang C, et al. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia- reperfusion. Biomaterials [Internet]. Elsevier; 2019;197:146–60. Available from: https://doi.org/10.1016/j.biomaterials.2019.01.016

留言 (0)

沒有登入
gif