Pharmacokinetics in Critically Ill Children with Acute Kidney Injury

Goldstein SL. Pediatric acute renal failure: demographics and treatment. Contrib Nephrol. 2004;144:284–90.

Article  PubMed  Google Scholar 

Akcan-Arikan A, et al. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007;71(10):1028–35.

Article  CAS  PubMed  Google Scholar 

Goldstein SL. Acute kidney injury biomarkers: renal angina and the need for a renal troponin I. BMC Med. 2011;9:135.

Article  PubMed  PubMed Central  Google Scholar 

Fitzgerald JC, et al. Risk factors and inpatient outcomes associated with acute kidney injury at pediatric severe sepsis presentation. Pediatr Nephrol. 2018;33(10):1781–90.

Article  PubMed  Google Scholar 

Slater MB, et al. Risk factors of acute kidney injury in critically ill children. Pediatr Crit Care Med. 2016;17(9):e391–8.

Article  PubMed  Google Scholar 

Kari JA, et al. Outcome of pediatric acute kidney injury: a multicenter prospective cohort study. Pediatr Nephrol. 2018;33(2):335–40.

Article  PubMed  Google Scholar 

Basu RK, et al. Assessment of Worldwide Acute Kidney Injury, Renal Angina and Epidemiology in critically ill children (AWARE): study protocol for a prospective observational study. BMC Nephrol. 2015;16:24.

Article  PubMed  PubMed Central  Google Scholar 

Alkandari O, et al. Acute kidney injury is an independent risk factor for pediatric intensive care unit mortality, longer length of stay and prolonged mechanical ventilation in critically ill children: a two-center retrospective cohort study. Crit Care. 2011;15(3):R146.

Article  PubMed  PubMed Central  Google Scholar 

Vaara S, Pettila V, Kaukonen KM. Quality of pharmacokinetic studies in critically ill patients receiving continuous renal replacement therapy. Acta Anaesthesiol Scand. 2012;56(2):147–57.

Article  CAS  PubMed  Google Scholar 

Li AM, et al. A systematic review of antibiotic dosing regimens for septic patients receiving continuous renal replacement therapy: do current studies supply sufficient data? J Antimicrob Chemother. 2009;64(5):929–37.

Article  CAS  PubMed  Google Scholar 

Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care. 2013;17(1):204.

Article  PubMed  PubMed Central  Google Scholar 

For Children (Conventional Units) | NIDDK. 31 July 2022]; https://www.niddk.nih.gov/health-information/professionals/clinical-tools-patient-management/kidney-disease/laboratory-evaluation/glomerular-filtration-rate-calculators/children-conventional-units. Accessed 31 July 2022.

Levey AS. Measurement of renal function in chronic renal disease. Kidney Int. 1990;38(1):167–84.

Article  CAS  PubMed  Google Scholar 

Perrone RD, et al. Utility of radioisotopic filtration markers in chronic renal insufficiency: simultaneous comparison of 125I-iothalamate, 169Yb-DTPA, 99mTc-DTPA, and inulin The Modification of Diet in Renal Disease Study. Am J Kidney Dis. 1990;16(3):224–35.

Article  CAS  PubMed  Google Scholar 

van Acker BA, et al. Creatinine clearance during cimetidine administration for measurement of glomerular filtration rate. Lancet. 1992;340(8831):1326–9.

Article  PubMed  Google Scholar 

Shemesh O, et al. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int. 1985;28(5):830–8.

Article  CAS  PubMed  Google Scholar 

Coresh J, et al. Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis. 2002;39(5):920–9.

Article  CAS  PubMed  Google Scholar 

Cherry RA, et al. Accuracy of short-duration creatinine clearance determinations in predicting 24-hour creatinine clearance in critically ill and injured patients. J Trauma. 2002;53(2):267–71.

Article  CAS  PubMed  Google Scholar 

Pong S, et al. 12-hour versus 24-hour creatinine clearance in critically ill pediatric patients. Pediatr Res. 2005;58(1):83–8.

Article  PubMed  Google Scholar 

Wilson RF, Soullier G. The validity of two-hour creatinine clearance studies in critically ill patients. Crit Care Med. 1980;8(5):281–4.

Article  CAS  PubMed  Google Scholar 

Holford NHG, Anderson BJ. Allometric size: The scientific theory and extension to normal fat mass. Eur J Pharm Sci. 2017;109S:S59–64.

Article  PubMed  Google Scholar 

Sinha J, Duffull SB, Al-Sallami HS. A review of the methods and associated mathematical models used in the measurement of fat-free mass. Clin Pharmacokinet. 2018;57(7):781–95.

Article  PubMed  Google Scholar 

McLeay SC, et al. The relationship between drug clearance and body size: systematic review and meta-analysis of the literature published from 2000 to 2007. Clin Pharmacokinet. 2012;51(5):319–30.

Article  CAS  PubMed  Google Scholar 

O'Hanlon CJ et al. Consistent methods for fat free mass, creatinine clearance, and glomerular filtration rate to describe renal function from neonates to adults. CPT Pharmacometr Syst Pharmacol. 2023;12:401–12.

Poston JT, Koyner JL. Sepsis associated acute kidney injury. BMJ. 2019;364: k4891.

Article  PubMed  PubMed Central  Google Scholar 

Downes KJ, et al. Urinary kidney injury biomarkers and tobramycin clearance among children and young adults with cystic fibrosis: a population pharmacokinetic analysis. J Antimicrob Chemother. 2017;72(1):254–60.

Article  CAS  PubMed  Google Scholar 

Gist KM, et al. Acute kidney injury biomarkers predict an increase in serum milrinone concentration earlier than serum creatinine-defined acute kidney injury in infants after cardiac surgery. Ther Drug Monit. 2018;40(2):186–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benoit SW, et al. A novel strategy for identifying early acute kidney injury in pediatric hematopoietic stem cell transplantation. Bone Marrow Transplant. 2019;54(9):1453–61.

Article  CAS  PubMed  Google Scholar 

Finney H, et al. Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children. Arch Dis Child. 2000;82(1):71–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coll E, et al. Serum cystatin C as a new marker for noninvasive estimation of glomerular filtration rate and as a marker for early renal impairment. Am J Kidney Dis. 2000;36(1):29–34.

Article  CAS  PubMed  Google Scholar 

Fliser D, Ritz E. Serum cystatin C concentration as a marker of renal dysfunction in the elderly. Am J Kidney Dis. 2001;37(1):79–83.

Article  CAS  PubMed  Google Scholar 

Mussap M, et al. Cystatin C is a more sensitive marker than creatinine for the estimation of GFR in type 2 diabetic patients. Kidney Int. 2002;61(4):1453–61.

Article  CAS  PubMed  Google Scholar 

Hoek FJ, Kemperman FA, Krediet RT. A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. Nephrol Dial Transplant. 2003;18(10):2024–31.

Article  CAS  PubMed  Google Scholar 

Diao JA, et al. In search of a better equation—performance and equity in estimates of kidney function. N Engl J Med. 2021;384(5):396–9.

Article  PubMed  PubMed Central  Google Scholar 

Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol. 2009;4(11):1832–43.

Article  PubMed  Google Scholar 

Fong J, et al. Length/serum creatinine ratio does not predict measured creatinine clearance in critically ill children. Clin Pharmacol Ther. 1995;58(2):192–7.

Article  CAS  PubMed  Google Scholar 

Kwong MB, et al. Lack of evidence that formula-derived creatinine clearance approximates glomerular filtration rate in pediatric intensive care population. Clin Nephrol. 1985;24(6):285–8.

CAS  PubMed  Google Scholar 

Suh-Lailam B. Pediatric estimation of glomerular filtration rate. 2015 [cited 2022 July 26 ]; https://www.aacc.org/cln/articles/2015/may/pediatric-estimation-of-glomerular-filtration-rate#:~:text=In%20children%2C%20the%20most%20frequently,with%20calibration%20traceable%20to%20IDMS. Accessed 26 July 2022.

Counahan R, et al. Estimation of glomerular filtration rate from plasma creatinine concentration in children. Arch Dis Child. 1976;51(11):875–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rabito CA, et al. Noninvasive, real-time monitoring of renal function during critical care. J Am Soc Nephrol. 1994;4(7):1421–8.

Article  CAS  PubMed  Google Scholar 

Debreczeny MP, Dorshow RB. Transdermal optical renal function monitoring in humans: development, verification, and validation of a prototype device. J Biomed Opt. 2018;23(5):1–9.

留言 (0)

沒有登入
gif