Cross-Linked β-Cyclodextrin Based Nanosponges for Allyl Methyl Sulfide Delivery-Physicochemical Characterization and In Vitro Study

Walag AMP, Ahmed O, Jeevanandam J, Akram M, Ephraim-Emmanuel BC, Egbuna C, et al. Health benefits of organosulfur compounds. Functional foods and nutraceuticals: bioactive components, formulations and innovations. 2020:445–72.

Lawson L, Hunsaker S. Allicin bioavailability and bioequivalence from garlic supplements and garlic foods. Nutrients. 2018;10(7):812.

Article  PubMed  PubMed Central  Google Scholar 

Sujithra K, Srinivasan S, Indumathi D, Vinothkumar V. Allyl methyl sulfide, an organosulfur compound alleviates hyperglycemia mediated hepatic oxidative stress and inflammation in streptozotocin-induced experimental rats. Biomed Pharmacother. 2018;107:292–302.

Article  CAS  PubMed  Google Scholar 

Selvamuthukumar S, Anandam S, Krishnamoorthy K, Rajappan M. Nanosponges: a novel class of drug delivery system-review. J Pharm Pharm Sci. 2012;15(1):103–11.

Article  Google Scholar 

Rossi S, Ferrari F, Bonferoni MC, Caramella C. Characterization of chitosan hydrochloride–mucin interaction by means of viscosimetric and turbidimetric measurements. Eur J Pharm Sci. 2000;10(4):251–7.

Article  CAS  PubMed  Google Scholar 

Kumar S, Trotta F, Rao R. Encapsulation of babchi oil in cyclodextrin-based nanosponges: physicochemical characterization, photodegradation, and in vitro cytotoxicity studies. Pharmaceutics. 2018;10(4):169.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swaminathan S, Cavalli R, Trotta F. Cyclodextrin-based nanosponges: a versatile platform for cancer nanotherapeutics development. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2016;8(4):579–601.

CAS  PubMed  Google Scholar 

Trotta F. Cyclodextrin nanosponges and their applications. Cyclodextrins in pharmaceutics, cosmetics, and biomedicine: current and future industrial applications. 2011:323–42.

Shende P, Kulkarni YA, Gaud RS, Deshmukh K, Cavalli R, Trotta F, et al. Acute and repeated dose toxicity studies of different beta-cyclodextrin-based nanosponge formulations. J Pharm Sci. 2015;104(5):1856–63.

Article  CAS  PubMed  Google Scholar 

Mognetti B, Barberis A, Marino S, Berta G, De Francia S, Trotta F, et al. In vitro enhancement of anti-cancer activity of paclitaxel by a cremophor free cyclodextrin-based nanosponge formulation. J Incl Phenom Macrocycl Chem. 2012;74:201–10.

Article  CAS  Google Scholar 

Rao M, Bajaj A, Khole I, Munjapara G, Trotta F. In vitro and in vivo evaluation of β-cyclodextrin-based nanosponges of telmisartan. J Incl Phenom Macrocycl Chem. 2013;77:135–45.

Article  CAS  Google Scholar 

Soloway S, Wilen SH. Improved ferric chloride test for phenols. Anal Chem. 1952;24(6):979–83.

Article  CAS  Google Scholar 

Rao MR, Shirsath C. Enhancement of bioavailability of non-nucleoside reverse transciptase inhibitor using nanosponges. AAPS PharmSciTech. 2017;18(5):1728–38.

Article  CAS  PubMed  Google Scholar 

Swaminathan S, Vavia P, Trotta F, Torne S. Formulation of betacyclodextrin based nanosponges of itraconazole. J Incl Phenom Macrocycl Chem. 2007;57(1):89–94.

Article  CAS  Google Scholar 

Pushpalatha R, Selvamuthukumar S, Kilimozhi D. Cross-linked, cyclodextrin-based nanosponges for curcumin delivery-Physicochemical characterization, drug release, stability and cytotoxicity. Journal of drug delivery science and technology. 2018;45:45–53.

Article  CAS  Google Scholar 

König WA, Joulain D, Hochmuth D. Terpenoids and related constituents of essential oils. Library of MassFinder. 2004;2.

Sharma D, Maheshwari D, Philip G, Rana R, Bhatia S, Singh M, et al. Formulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using Box-Behnken design: in vitro and in vivo evaluation. BioMed research international. 2014;2014.

Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of anti-oxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;269(2):337–41.

Article  CAS  PubMed  Google Scholar 

Mensor LL, Menezes FS, Leitão GG, Reis AS, Santos TCd, Coube CS, et al. Screening of Brazilian plant extracts for anti-oxidant activity by the use of DPPH free radical method. Phytother Res. 2001;15(2):127–30.

Rastogi S, Iqbal MS, Ohri D. In vitro study of anti-inflammatory and anti-oxidant activity of some medicinal plants and their interrelationship. In Vitro. 2018;11(4):2455–3891.

Google Scholar 

留言 (0)

沒有登入
gif