A Novel CFD Model of SMX Static Mixer Used in Advanced Continuous Manufacturing of Active Pharmaceutical Ingredients (API)

Babnik S, Erklavec Zajec V, Oblak B, Likozar B, Pohar A. A Review of Computational Fluid Dynamics (CFD) Simulations of Mixing in the Pharmaceutical Industry. Biomed J Sci Tech Res. 2020;27(3):20732–6.

Google Scholar 

Lavanya NL, Bhattacharyya S. Computational fluid dynamics-the futuristic innovation in pharmaceutical industry. Indian JPharmEducRes. 2021;55(4):930–8.

Google Scholar 

Jovanović A, Pezo M, Pezo L, Lević L. DEM/CFD analysis of granular flow in static mixers. Powder Technol. 2014;266:240–8.

Article  Google Scholar 

Núñez-Flores A, Sandoval A, Mancilla E, Hidalgo-Millán A, Ascanio G. Enhancement of photocatalytic degradation of ibuprofen contained in water using a static mixer. Chem Eng Res Des. 2020;156:54–63.

Article  Google Scholar 

Brechtelsbauer C, Ricard F. Reaction engineering evaluation and utilization of static mixer technology for the synthesis of pharmaceuticals. Org Process Res Dev. 2001;5(6):646–51.

Article  CAS  Google Scholar 

Douroumis D, Fahr A. Enhanced dissolution of oxcarbazepine microcrystals using a static mixer process. Colloids Surf B Biointerfaces. 2007;59(2):208–14.

Article  CAS  PubMed  Google Scholar 

Chen W, Chen X, Gandhi RB, Mantri RV, Sadineni V, Saluja A. Application of mechanistic models for process design and development of biologic drug products. J Pharm Innov. 2016;11:200–13.

Article  Google Scholar 

Hörmann TJ, Suzzi D, Adam S, Khinast JG. DOE-based CFD optimization of pharmaceutical mixing processes. J Pharm Innov. 2012;7:181–94.

Article  Google Scholar 

Zeberli A, Casola G, Badr S, Siegmund C, Mattern M, Sugiyama H. Approach for multicriteria equipment redesign in sterile manufacturing of biopharmaceuticals. J Pharm Innov. 2018;15:15–25.

Article  Google Scholar 

Kresta SM, Etchells AW III, Dickey DS, Atiemo-Obeng VA, editors. Advances in Industrial Mixing: A Companion to the Handbook of Industrial Mixing. Hoboken, NJ: John Wiley & Sons; 2015.

Liu Y, Rao A, Ma F, Li X, Wang J, Xiao Q. Investigation on mixing characteristics of hydrogen and natural gas fuel based on SMX static mixer. Chem Eng Res Des. 2023;197:738–49.

Article  CAS  Google Scholar 

Thakur RK, Vial C, Nigam KDP, Nauman EB, Djelveh G. Static mixers in the process industries—a review. Chem Eng Res Des. 2003;81(7):787–826.

Article  CAS  Google Scholar 

Valdés JP, Kahouadji L, Matar OK. Current advances in liquid–liquid mixing in static mixers: a review. Chem Eng Res Des. 2022;177:694–731.

Article  Google Scholar 

Soman SS, Madhuranthakam CMR. Effects of internal geometry modifications on the dispersive and distributive mixing in static mixers. Chem Eng Process. 2017;122:31–43.

Article  CAS  Google Scholar 

Klutz S, Kurt SK, Lobedann M, Kockmann N. Narrow residence time distribution in tubular reactor concept for Reynolds number range of 10–100. Chem Eng Res Des. 2015;95:22–33.

Article  CAS  Google Scholar 

Haddadi MM, Hosseini SH, Rashtchian D, Olazar M. Comparative analysis of different static mixers performance by CFD technique: an innovative mixer. Chin J Chem Eng. 2020;28(3):672–84.

Article  CAS  Google Scholar 

Vikhansky A. CFD modelling of turbulent liquid-liquid dispersion in a static mixer. Chem Eng Process Process Intensif. 2020;149:107840.

Article  CAS  Google Scholar 

Singh MK, Anderson PD, Meijer HE. Understanding and optimizing the SMX static mixer. Macromol Rapid Commun. 2009;30(4–5):362–76.

Article  CAS  PubMed  Google Scholar 

Liu S, Hrymak AN, Wood PE. Design modifications to SMX static mixer for improving mixing. AIChE J. 2006;52(1):150–7.

Article  CAS  Google Scholar 

Ghanem A, Lemenand T, Della Valle D, Peerhossaini H. Static mixers: mechanisms, applications, and characterization methods – a review. Chem Eng Res Des. 2014;92(2):205–28.

Article  CAS  Google Scholar 

Azizi F, Abou-Hweij W, Lebaz N, Sheibat-Othman N. A numerical evaluation of flows through an SMX-Plus mixer. Chem Eng Res Des. 2022;178:382–94.

Article  CAS  Google Scholar 

Rahmani RK, Ayasoufi A, Keith TG. A numerical study of the global performance of two static mixers. J Fluids Eng. 2007;129(3):338–49.

Article  CAS  Google Scholar 

Meijer HEH, Singh MK, Anderson PD. On the performance of static mixers: a quantitative comparison. Prog Polym Sci. 2012;37(10):1333–49.

Article  CAS  Google Scholar 

Kresta SM, Atiemo-Obeng VA, Paul EL, editors. Handbook of Industrial Mixing: Science and Practice. Hoboken, NJ: Wiley; 2003.

Rauline D, Le Blévec JM, Bousquet J, Tanguy PA. A comparative assessment of the performance of the Kenics and SMX static mixers. Chem Eng Res Des. 2000;78(3):389–96.

Article  CAS  Google Scholar 

Rauline D, Tanguy PA, Le Blévec JM, Bousquet J. Numerical investigation of the performance of several static mixers. Can J Chem Eng. 1998;76(3):527–35.

Article  CAS  Google Scholar 

Leclaire S, Vidal D, Fradette L, Bertrand F. Validation of the pressure drop–flow rate relationship predicted by lattice Boltzmann simulations for immiscible liquid–liquid flows through SMX static mixers. Chem Eng Res Des. 2020;153:350–68.

Article  CAS  Google Scholar 

Theron F, Sauze NL. Comparison between three static mixers for emulsification in turbulent flow. Int J Multiph Flow. 2011;37(5):488–500.

Article  CAS  Google Scholar 

Chabanon E, Sheibat-Othman N, Mdere O, Valour JP, Urbaniak S, Puel F. Drop size distribution monitoring of oil-in-water emulsions in SMX+ static mixers: effect of operating and geometrical conditions. Int J Multiph Flow. 2017;92:61–9.

Article  CAS  Google Scholar 

Rafiee M. Use of Positron Emission Particle Tracking (PEPT) for Studying Laminar Mixing in Static Mixers. Ph.D. Dissertation, University of Birmingham; 2014.

Christiansen RL. Establishing independence of continuous process product samples. AIChE J. 2000;46:1441–8.

Article  CAS  Google Scholar 

Fradette L, Li HZ, Choplin L, Tanguy P. 3D finite element simulation of fluid flow through a SMX static mixer. Comput Chem Eng. 1998;22:S759–61.

Article  CAS  Google Scholar 

Baumann A, Jeelani SAK, Holenstein B, Stössel P, Windhab EJ. Flow regimes and drop break-up in SMX and packed bed static mixers. Chem Eng Sci. 2012;73:354–65.

Article  CAS  Google Scholar 

Wünsch O, Böhme G. Numerical simulation of 3d viscous fluid flow and convective mixing in a static mixer. Arch Appl Mech. 2000;70(1):91–102.

Google Scholar 

Albertazzi J, Florit F, Busini V, Rota R. Mixing efficiency and residence time distributions of a side-injection tubular reactor equipped with Static mixers. Ind Eng Chem Res. 2021;60(29):10595–602.

Article  CAS  Google Scholar 

Valdes JP, Kahouadji L, Liang F, Shin S, Chergui J, Juric D, Matar OK. Direct numerical simulations of liquid-liquid dispersions in a SMX mixer under different inlet conditions. Chem Eng J. 2023;462:142248.

Article  CAS  Google Scholar 

Zalc J, Szalai E, Muzzio F. Mixing dynamics in the SMX static mixer as a function of injection location and flow ratio. Polym Eng Sci. 2003;43(4):875–90.

Article  CAS  Google Scholar 

Zalc J, Szalai E, Muzzio F, Jaffer S. Characterization of flow and mixing in an SMX static mixer. AIChE J. 2002;48(3):427–36.

Article  CAS  Google Scholar 

Aman J, Duijvelaar E, Botros L, Kianzad A, Schippers JR, Smeele PJ, Azhang S, Bartelink IH, Bayoumy AA, Bet PM, Boersma W, Bonta PI, Boomars KAT, Bos LDJ, van Bragt J, Braunstahl GJ, Celant LR, Eger KAB, Geelhoed JJM, van Glabbeek YLE, Grotjohan HP, Hagens LA, Happe M, Hazes BD, Heunks LMA, van den Heuvel M, Hoefsloot W, Hoek RJA, Hoekstra R, Hofstee HMA, Juffermans NP, Kemper EM, Kos R, Kunst PWA, Lammers A, van der Lee I, van der Lee EL, Maitland-van der Zee AH, Mau Asam PFM, Mieras A, Muller M, Neefjes ECW, Nossent EJ, Oswald LMA, Overbeek MJ, Pamplona CC, Paternotte N, Pronk N, de Raaf MA, van Raaij BFM, Reijrink M, Schultz MJ, Serpa Neto A, Slob EMA, Smeenk F, Smit MR, Smits AJ, Stalenhoef JE, Tuinman PR, Vanhove A, Wessels JN, van Wezenbeek JCC, Vonk Noordegraaf A, de Man FS, Bogaard HJ. Imatinib in patients with severe COVID-19: a randomised, double-blind, placebo-controlled, clinical trial. Lancet Respir Med. 2021;9(9):957-68.

Strobelt R, Adler J, Paran N, Yahalom-Ronen Y, Melamed S, Politi B, Shulman Z, Schmiedel D, Shaul Y. Imatinib inhibits SARS-CoV-2 infection by an off-target-mechanism. Sci Rep. 2022;12(1):5758.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lim J, Collins N, Singh R, Muzzio F. A Novel Continuous API Manufacturing Process for Emergency Pandemic Response. Oral presentation at IFPAC Annual Meeting, Maryland (Washington D.C.), USA, February 28 - March 5, 2021.

Singh R, Lim J, Collins N, Muzzio F. A Digital Twin for API Manufacturing Process. Oral presentation at IFPAC Annual Meeting, Maryland (Washington D.C.), USA, February 28 - March 5, 2021.

Edward JT. Molecular volumes and the Stokes-Einstein Equation. J Chem Educ. 1970;47(4):261.

Article  CAS  Google Scholar 

Constantin P, Foiaş C. Navier-Stokes Equations. Chicago, IL: University of Chicago Press; 1988.

Book  Google Scholar 

Perry JH. Chemical Engineers’ Handbook. New York, NY: McGraw-Hill Book Co.; 1950.

Book  Google Scholar 

Lee MH, Kim CM, Park GY, Choi CH, Park CY. Grid independence test of computational fluid dynamics model for indoor airflow analysis. J Korean Inst Archit Sustain Environ Build Syst. 2020;14(2):183–94.

Google Scholar 

Latché J-C, Piar B, Saleh K. A discrete kinetic energy preserving convection operator for variable density flows on locally refined staggered meshes. 2019. Retrieved from HAL open science: ⟨hal-02391939⟩.

Dailey LD, Jennions IK, Orkwis PD. Simulation of laminar-turbulent transition with an explicit Navier-Stokes flow solver. J Propul Power. 1995;11:1187–94.

Article  Google Scholar 

Singh S. k–ɛ modeling using modified nodal integral method. Nucl Eng Des. 2009;239(7):1314–22.

Article  CAS  Google Scholar 

Theron F, Le Sauze N, Ricard A. Turbulent liquid−liquid dispersion in Sulzer SMX mixer. Ind Eng Chem Res. 2010;49(2):623–32.

Article  CAS  Google Scholar 

Brewster RA. A Rational Friction Factor Correlation for Laminar Fully Developed Pipe Flows of Shear-Thinning Non-Newtonian Fluids. J Fluids Eng. 2022;144(1):014502.

Article  CAS  Google

留言 (0)

沒有登入
gif