In Vitro Profiling of Gliclazide-Loaded Aerosil 380 Solid Dispersion–Based Tablets with Co-Processed Excipients

Rayaprolu BM, Strawser JJ, Anyarambhatla G. Excipients in parenteral formulations: selection considerations and effective utilization with small molecules and biologics. Drug Dev Ind Pharm. 2018. https://doi.org/10.1080/03639045.2018.1483392.

Article  PubMed  Google Scholar 

Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nat Biomed Eng. 2021. https://doi.org/10.1038/s41551-021-00698-w.

Article  PubMed  Google Scholar 

Martin C, Jiri D. Advances in dissolution instrumentation and their practical applications. Drug Dev Ind Pharm. 2014. https://doi.org/10.3109/03639045.2013.841184.

Article  Google Scholar 

Kulkarni MC, Kolhe SV. Formulation development and evaluation of atorvastatin calcium tablets using co-processed excipients. Int J Pharm Sci Rev Res. 2016;36(1):217–22.

CAS  Google Scholar 

Atneriya U, Kapoor D, Sainy J, Maheshwari R. In vitro profiling of fenofibrate solid dispersion mediated tablet formulation to treat high blood cholesterol. Annales Pharma Fran. 2023. https://doi.org/10.1016/j.pharma.2022.08.009.

Article  Google Scholar 

Sareen S, Mathew G, Joseph L. Improvement in solubility of poorly water-soluble drugs by solid dispersion. Int J Pharm Investig. 2012. https://doi.org/10.4103/2230-973X.96921.

Article  PubMed  PubMed Central  Google Scholar 

Takeuchi H, Nagira S, Yamamoto H, Kawashima Y. Solid dispersion particles of amorphous indomethacin with fine porous silica particles by using spray-drying method. Int J Pharm. 2005. https://doi.org/10.1016/j.ijpharm.2004.12.019.

Article  PubMed  Google Scholar 

Choi JS, Lee SE, Jang WS, Byeon JC, Park JS. Tadalafil solid dispersion formulations based on PVP/VA S-630: Improving oral bioavailability in rats. Eur J Pharm Sci. 2017;106:152–8. https://doi.org/10.1016/j.ejps.2017.05.065.

Article  CAS  PubMed  Google Scholar 

Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J of Pharm Sci. 1971. https://doi.org/10.1002/jps.2600600902.

Article  Google Scholar 

Zhao J, Koo O, Pan D, Wu Y, Morkhade D, Rana S, Saha P, Marin A. The impact of disintegrant type, surfactant, and API properties on the processability and performance of roller compacted formulations of acetaminophen and aspirin. AAPS J. 2017. https://doi.org/10.1208/s12248-017-0104-6.

Article  PubMed  Google Scholar 

Jain KK. An overview of drug delivery systems. In: Jain K, editor. Drug delivery systems. Methods in molecular biology. New York, NY: Humana; 2020. https://doi.org/10.1007/978-1-4939-9798-5_1.

Chapter  Google Scholar 

Armstrong NA. Tablet manufacture by direct compression. In: Swarbrick J, editor. Encyclopaedia of Pharmaceutical Technology. 3rd ed. USA: Informa Healthcare; 2007. p. 3673–83.

Google Scholar 

Alderborn G. Tablets and compaction. In: Aulton ME, Taylor KM, editors. Aulton’s Pharmaceutics: The Design and Manufacture of Medicines. 4th ed. London: Elsevier Ltd; 2013. p. 504–49.

Google Scholar 

Augsburger LL, Zellhofer MJ. Tablet formulation. In: Encyclopaedia of pharmaceutical technology. 3rd ed. USA: Informa Healthcare; 2007. p. 3641–52.

Google Scholar 

Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B. Microcrystalline cellulose, a direct compression binder in a quality by design environment- a review. Int J Pharm. 2014;473:64–72.

Article  CAS  PubMed  Google Scholar 

Li Z, Zhao L, Lin X, Shen L, Feng Y. Direct compaction: an update of materials, trouble-shooting, and application. Int J Pharm. 2017. https://doi.org/10.1016/j.ijpharm.2017.07.035.

Article  PubMed  PubMed Central  Google Scholar 

Gonnissen Y, Verhoeven E, Peeters E, Remon J, Vervaet C. Coprocessing via spray drying as a formulation platform to improve the compactibility of various drugs. Eur J Pharm and Biopharm. 2008;69:320–34.

Article  CAS  Google Scholar 

Apeji YE, Aluga D, Olayemi OJ, Oparaeche C, Anyebe SN, Gamlen MJ, Oyi AR. Comparative analysis of co-processed starches prepared by three different methods. British J Pham. 2017. https://doi.org/10.5920/bjpharm.2017.08.

Article  Google Scholar 

van der Merwe J, Steenekamp J, Steyn D, Hamman J. The role of functional excipients in solid oral dosage forms to overcome poor drug dissolution and bioavailability. Pharmaceutics. 2020. https://doi.org/10.3390/pharmaceutics12050393.

Article  PubMed  PubMed Central  Google Scholar 

Crowley PJ, Martini LG. Formulation design: new drugs from old. Drug Discov Today Ther Strateg. 2004. https://doi.org/10.1016/j.ddstr.2004.11.020.

Article  Google Scholar 

Guth F, Schiffter HA, Kolter K. Novel excipients-from concept to launch. Chim Oggi Chem Today. 2013;31:78–81.

Google Scholar 

Gohel MC, Jogani PD. A review of co-processed directly compressible excipients. Journal of Pharmacy & Pharmaceutical Sciences: a publication of the Canadian Society for Pharmaceutical Sci. 2005;8(1):76–93.

CAS  Google Scholar 

Gupta P, Nachaegari SK, Bansal AK. Improved excipient functionality by coprocessing. In: Katdare A, Chaubal M, editors. Excipient development for pharmaceutical, biotechnology and drug delivery systems. CRC Press; 2006. p. 109–26. https://doi.org/10.1201/9781420004137.

Chapter  Google Scholar 

Desai U, Shavan R, Mhatre P, Chinchole R. A review: coprocessed excipients. Int J Pharm Sci Rev Research. 2012;12(2):93–105.

CAS  Google Scholar 

Rojas J, Buckner I, Kumar V. Co-processed excipients with enhanced direct compression functionality for improved tableting performance. Drug Dev Ind Pharm. 2012;38(10):1159–70.

Article  CAS  PubMed  Google Scholar 

Salim I, Kehinde OA, Abdulsamad A, Khalid GM, Gwarzo MS. Physicomechanical behavior of novel directly compressible starch-MCC-povidone composites and their application in ascorbic acid tablet formulation. British J Pharm. 2018. https://doi.org/10.5920/bjpharm.2018.03.

Article  Google Scholar 

Saha S, Shahiwala AF. Multifunctional coprocessed excipients for improved tabletting performance Multifunctional coprocessed excipients for improved tabletting performance. Drug Delivery. 2009. https://doi.org/10.1517/17425240802708978.

Article  Google Scholar 

Builders PF, Bonaventure AM, Tiwalade A, Okpako LC, Attama AA. Novel multifunctional pharmaceutical excipients derived from microcrystalline cellulose-starch microparticulate composites prepared by compatibilized reactive polymer blending. Int J Pharm. 2010;388:159–67.

Article  CAS  PubMed  Google Scholar 

Ozkan Y, Atay T, Dikmen N, Aboul-Enein HY. Improvement of water solubility and in vitro dissolution rate of gliclazide by complexation with β-cyclodextrin. Pharm Acta Helv. 2000. https://doi.org/10.1016/s0031-6865(99)00063-1.

Article  PubMed  Google Scholar 

Harrower AD. Comparison of efficacy, secondary failure rate and complications of sulfonylurea. J Diabetes Its Complicat. 1994. https://doi.org/10.1016/1056-8727(94)90044-2.

Article  Google Scholar 

Palmer KJ, Brogden RN. Gliclazide, an update of its pharmacological properties and therapeutic efficacy in NIDDM. Drugs. 1993. https://doi.org/10.2165/00003495-199346010-00007.

Article  PubMed  Google Scholar 

Alkhamis KA, Allaboun H, Al-Momani WY. Study of the solubilization of gliclazide by aqueous micellar solutions. J Pharm Sci. 2003. https://doi.org/10.1002/jps.10350.

Article  PubMed  Google Scholar 

Varshosaz J, Talari R, Mostafavi SA, Nokhodchi A. Dissolution enhancement of gliclazide using in situ micronization by solvent change method. Pow Tech. 2008. https://doi.org/10.1016/j.powtec.2008.02.018.

Article  Google Scholar 

Saharan VA, Choudhury P. Dissolution rate enhancement of gliclazide by ordered mixing. Acta Pharm. 2011. https://doi.org/10.2478/v10007-011-0021-7.

Article  PubMed  Google Scholar 

Biswal S, Sahoo J, Murthy PN, Giradkar RP, Avari JG. Enhancement of dissolution rate of gliclazide using solid dispersions with polyethylene glycol 6000. AAPS PharmSciTech. 2008. https://doi.org/10.1208/s12249-008-9079-z.

Article  PubMed  PubMed Central  Google Scholar 

Paul S, Islam MN, Ali MA, Barman RK, Wahed MII, Rahman BM. Improvement of dissolution rate of gliclazide using solid dispersions with aerosil 380 and its effect on alloxan-induced diabetic rats. Pharmacology and Pharmacy. 2019. https://doi.org/10.4236/pp.2019.108030.

Article  Google Scholar 

Biswal S, Sahoo J, Murthy PN. Physicochemical properties of solid dispersions of gliclazide in polyvinylpyrrolidone K90. AAPS PharmSciTech. 2009. https://doi.org/10.1208/s12249-009-9212-7.

Article  PubMed  PubMed Central  Google Scholar 

Febriyenti F, Rahmi S, Halim A. Study of gliclazide solid dispersion systems using PVP k-30 and PEG 6000 by solvent method. J Pharm Bioallied Sci. 2019. https://doi.org/10.4103/jpbs.JPBS_87_18.

Article  PubMed  PubMed Central  Google Scholar 

Wang L, De Cui F, Sunada H. Preparation and evaluation of solid dispersions of nitrendipine prepared with fine silica particles using the melt-mixing method. Chem Pharm Bull. 2006. https://doi.org/10.1248/cpb.54.37.

Article  Google Scholar 

Varma MM, Kumar PS. Formulation and evaluation of gliclazide tablets containing PVP-K30 and Hydroxy propyl-β-cyclodextrin solid dispersion. Int J Pharm Sci Nanotech. 2012;5(2):1706–19.

Google Scholar 

Fuley MJ, Parisar S. Preparation and characterization of gliclazide-polyethylene glycol 4000 solid dispersions. Acta Pharm. 2009;59:57–65.

Google Scholar 

Dukhan AAM, Amalina N, Oo MK, Sengupta P, Doolaanea AAM, Aljapairai KAS, Chatterjee B. Formulation of dispersed gliclazide powder in polyethylene glycol–polyvinyl caprolactam–polyvinyl acetate grafted copolymer carrier for capsulation and improved dissolution. Indian J Pharm Educ Res. 2018. https://doi.org/10.5530/ijper.52.4s.100.

Article  Google Scholar 

Mooranian A, Negrulj R, Mathavan S, et al. Stability and release kinetics of an advanced gliclazide-cholic acid formulation: the use of artificial-cell microencapsulation in slow release targeted oral delivery of antidiabetics. J Pharm Innov. 2014. https://doi.org/10.1007/s12247-014-9182-5.

Article  PubMed 

留言 (0)

沒有登入
gif