Oleoylethanolamide attenuates cocaine-primed reinstatement and alters dopaminergic gene expression in the striatum

National Institute on Drug Abuse (NIDA), National Institute on Drug Abuse (NIDA). (2021). Overdose death rates.  https://www.drugabuse.gov/drug-topics/trends-statistics/overdose-death-rates. Accessed from 15 Mar 2021.

Brandt L, Chao T, Comer SD, Levin FR. Pharmacotherapeutic strategies for treating cocaine use disorder—what do we have to offer? Addiction. 2021;116(4):694–710. https://doi.org/10.1111/add.15242.

Article  PubMed  Google Scholar 

Nordfjærn T. Relapse patterns among patients with substance use disorders. J Subst Use. 2011;16(4):313–29. https://doi.org/10.3109/14659890903580482.

Article  Google Scholar 

Shalev U. Neurobiology of Relapse to Heroin and Cocaine seeking: a review. Pharmacol Rev. 2002;54(1):1–42. https://doi.org/10.1124/pr.54.1.1.

Article  CAS  PubMed  Google Scholar 

Aguilar MA, Rodríguez-Arias M, Miñarro J. Neurobiological mechanisms of the reinstatement of drug-conditioned place preference. Brain Res Rev. 2009;59(2):253–77. https://doi.org/10.1016/j.brainresrev.2008.08.002.

Article  PubMed  Google Scholar 

Farrell MR, Schoch H, Mahler SV. Modeling cocaine relapse in rodents: behavioral considerations and circuit mechanisms. Prog Neuropsychopharmacol Biol Psychiatry. 2018;87:33–47. https://doi.org/10.1016/j.pnpbp.2018.01.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Chiara G. A motivational learning hypothesis of the role of mesolimbic dopamine in compulsive drug use. J Psychopharmacol. 1998;12(1):54–67. https://doi.org/10.1177/026988119801200108.

Article  PubMed  Google Scholar 

Wolf ME. Synaptic mechanisms underlying persistent cocaine craving. Nat Rev Neurosci. 2016;17(6):351–65. https://doi.org/10.1038/nrn.2016.39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shaham Y, Shalev U, Lu L, de Wit H, Stewart J. The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology. 2003;168(1–2):3–20. https://doi.org/10.1007/s00213-002-1224-x.

Article  CAS  PubMed  Google Scholar 

Covey DP, Mateo Y, Sulzer D, Cheer JF, Lovinger DM. Endocannabinoid modulation of dopamine neurotransmission. Neuropharmacology. 2017;124:52–61. https://doi.org/10.1016/j.neuropharm.2017.04.033.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lupica CR, Riegel AC. Endocannabinoid release from midbrain dopamine neurons: a potential substrate for cannabinoid receptor antagonist treatment of addiction. Neuropharmacology. 2005;48(8):1105–16. https://doi.org/10.1016/j.neuropharm.2005.03.016.

Article  CAS  PubMed  Google Scholar 

Maldonado C, Rodríguez-Arias M, Castillo A, Aguilar MA, Miñarro J. Gamma-hydroxybutyric acid affects the acquisition and reinstatement of cocaine-induced conditioned place preference in mice. Behav Pharmacol. 2006;17(2):119–31. https://doi.org/10.1097/01.fbp.0000190685.84984.ec.

Article  CAS  PubMed  Google Scholar 

Maldonado R, Valverde O, Berrendero F. Involvement of the endocannabinoid system in drug addiction. Trends Neurosci. 2006;29(4):225–32. https://doi.org/10.1016/j.tins.2006.01.008.

Article  CAS  PubMed  Google Scholar 

De Vries TJ, Shaham Y, Homberg JR, Crombag H, Schuurman K, Dieben J, Vanderschuren LJMJ, Schoffelmeer AN M. A cannabinoid mechanism in relapse to cocaine seeking. Nat Med. 2001;7(10):1151–4. https://doi.org/10.1038/nm1001-1151.

Article  CAS  PubMed  Google Scholar 

Luján M, Alegre-Zurano L, Martín-Sánchez A, Cantacorps L, Valverde O. CB1 receptor antagonist AM4113 reverts the effects of cannabidiol on cue and stress-induced reinstatement of cocaine-seeking behaviour in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2022;113:110462. https://doi.org/10.1016/j.pnpbp.2021.110462.

Article  CAS  PubMed  Google Scholar 

Carey AN, Borozny K, Aldrich JV, McLaughlin JP. Reinstatement of cocaine place-conditioning prevented by the peptide kappa-opioid receptor antagonist arodyn. Eur J Pharmacol. 2007;569(1–2):84–9. https://doi.org/10.1016/j.ejphar.2007.05.007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Redila VA, Chavkin C. Stress-induced reinstatement of cocaine seeking is mediated by the kappa opioid system. Psychopharmacology. 2008;200(1):59–70. https://doi.org/10.1007/s00213-008-1122-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Orio L, Alen F, Pavón FJ, Serrano A, García-Bueno B. Oleoylethanolamide, neuroinflammation, and alcohol abuse. Front Mol Neurosci. 2019;11:490. https://doi.org/10.3389/fnmol.2018.00490.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sagheddu C, Torres LH, Marcourakis T, Pistis M. Endocannabinoid-like lipid neuromodulators in the regulation of dopamine signaling: relevance for drug addiction. Front Synaptic Neurosci. 2020;12:588660. https://doi.org/10.3389/fnsyn.2020.588660.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bowen KJ, Kris-Etherton PM, Shearer GC, West SG, Reddivari L, Jones PJH. Oleic acid-derived oleoylethanolamide: a nutritional science perspective. Prog Lipid Res. 2017;67:1–15. https://doi.org/10.1016/j.plipres.2017.04.001.

Article  CAS  PubMed  Google Scholar 

Mennella I, Boudry G, Val-Laillet D. Ethanolamine produced from oleoylethanolamide degradation contributes to acetylcholine/dopamine balance modulating eating behavior. J Nutr. 2019;149(3):362–5. https://doi.org/10.1093/jn/nxy281.

Article  PubMed  Google Scholar 

Almási R, Szőke É, Bölcskei K, Varga A, Riedl Z, Sándor Z, Szolcsányi J, Pethő G. Actions of 3-methyl-N-oleoyldopamine, 4-methyl-N-oleoyldopamine and N-oleoylethanolamide on the rat TRPV1 receptor in vitro and in vivo. Life Sci. 2008;82(11–12):644–51. https://doi.org/10.1016/j.lfs.2007.12.022.

Article  CAS  PubMed  Google Scholar 

Wang X, Miyares RL, Ahern GP. Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short-term food intake in mice via capsaicin receptor TRPV1: OEA activates vagal capsaicin receptors. J Physiol. 2005;564(2):541–7. https://doi.org/10.1113/jphysiol.2004.081844.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuchs RA, Evans KA, Ledford CC, Parker MP, Case JM, Mehta RH, See RE. The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology. 2005;30(2):296–309. https://doi.org/10.1038/sj.npp.1300579.

Article  CAS  PubMed  Google Scholar 

Knackstedt LA, Trantham-Davidson HL, Schwendt M. The role of ventral and dorsal striatum mGluR5 in relapse to cocaine-seeking and extinction learning: MGluR5 and cocaine-seeking. Addict Biol. 2014;19(1):87–101. https://doi.org/10.1111/adb.12061.

Article  CAS  PubMed  Google Scholar 

McHugh MJ, Demers CH, Braud J, Briggs R, Adinoff B, Stein EA. Striatal-insula circuits in cocaine addiction: implications for impulsivity and relapse risk. Am J Drug Alcohol Abus. 2013;39(6):424–32. https://doi.org/10.3109/00952990.2013.847446.

Article  Google Scholar 

Vorel SR, Liu X, Hayes RJ, Spector JA, Gardner EL. Relapse to cocaine-seeking after hippocampal theta burst stimulation. Science. 2001;292(5519):1175–8. https://doi.org/10.1126/science.1058043.

Article  CAS  PubMed  Google Scholar 

Jin P, Yu H-L, Tian-Lan, Zhang F, Quan Z-S. Antidepressant-like effects of oleoylethanolamide in a mouse model of chronic unpredictable mild stress. Pharmacol Biochem Behav. 2015;133:146–54. https://doi.org/10.1016/j.pbb.2015.04.001.

Article  CAS  PubMed  Google Scholar 

Lo Verme J, Fu J, Astarita G, La Rana G, Russo R, Calignano A, Piomelli D. The Nuclear receptor peroxisome proliferator-activated Receptor-α mediates the anti-inflammatory actions of Palmitoylethanolamide. Mol Pharmacol. 2005;67(1):15–9. https://doi.org/10.1124/mol.104.006353.

Article  CAS  PubMed  Google Scholar 

Thabuis C, Tissot-Favre D, Bezelgues J-B, Martin J-C, Cruz-Hernandez C, Dionisi F, Destaillats F. Biological Functions and Metabolism of Oleoylethanolamide. Lipids. 2008;43(10):887–94. https://doi.org/10.1007/s11745-008-3217-y.

Article  CAS  PubMed  Google Scholar 

Bilbao A, Blanco E, Luque-Rojas MJ, Suárez J, Palomino A, Vida M, Araos P, Bermúdez-Silva J, Fernández-Espejo E, Spanagel R, de Rodríguez F. Oleoylethanolamide dose-dependently attenuates cocaine-induced behaviours through a PPARα receptor-independent mechanism. Addict Biol. 2013;18(1):78–87. https://doi.org/10.1111/adb.12006.

Article  CAS  PubMed  Google Scholar 

González-Portilla M, Moya M, Montagud-Romero S, Rodríguez de Fonseca F, Orio L, Rodriguez-Arias M. Oleoylethanolamide attenuates the stress-induced conditioned rewarding properties of cocaine by modulating cerebellar TLR4 signaling pathway. Manuscript submitted for publication; 2022.

Bystrowska B, Frankowska M, Smaga I, Niedzielska-Andres E, Pomierny-Chamioło L, Filip M. Cocaine-Induced reinstatement of Cocaine seeking provokes changes in the endocannabinoid and N-Acylethanolamine levels in rat brain structures. Molecules. 2019;24(6):1125. https://doi.org/10.3390/molecules24061125.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bystrowska B, Smaga I, Frankowska M, Filip M. Changes in endocannabinoid and N-acylethanolamine levels in rat brain structures following cocaine self-administration and extinction training. Prog Neuropsychopharmacol Biol Psychiatry. 2014;50:1–10. https://doi.org/10.1016/j.pnpbp.2013.12.002.

Article  CAS  PubMed  Google Scholar 

de Fonseca R, Navarro F, Gómez M, Escuredo R, Nava L, Fu F, Murillo-Rodríguez J, Giuffrida E, LoVerme A, Gaetani J, Kathuria S, Gall S, C., Piomelli D. An anorexic lipid mediator regulated by feeding. Nature. 2001;414(6860):209–12. https://doi.org/10.1038/35102582.

Article 

留言 (0)

沒有登入
gif