Coral–algal endosymbiosis characterized using RNAi and single-cell RNA-seq

Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang, B. L. Thoughts on a very acidic symbiosome. Front. Microbiol. 6, 816 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Barott, K. L., Venn, A. A., Perez, S. O., Tambutté, S. & Tresguerres, M. Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis. Proc. Natl Acad. Sci. USA 112, 607–612 (2015).

Article  CAS  PubMed  Google Scholar 

Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).

Article  CAS  PubMed  Google Scholar 

Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

Article  CAS  PubMed  Google Scholar 

Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc. Natl Acad. Sci. USA 118, e2022653118 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Hu, M., Zheng, X., Fan, C.-M. & Zheng, Y. Lineage dynamics of the endosymbiotic cell type in the soft coral Xenia. Nature 582, 534–538 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roth, M. S. The engine of the reef: photobiology of the coral–algal symbiosis. Front. Microbiol. 5, 422 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Jinkerson, R. E. et al. Cnidarian-Symbiodiniaceae symbiosis establishment is independent of photosynthesis. Curr. Biol. 32, 2402–2415.e4 (2022).

Article  CAS  PubMed  Google Scholar 

Pinzón, J. H. et al. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R. Soc. Open Sci. 2, 140214 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Mohamed, A. R. et al. The transcriptomic response of the coral Acropora digitifera to a competent Symbiodinium strain: the symbiosome as an arrested early phagosome. Mol. Ecol. 25, 3127–3141 (2016).

Article  CAS  PubMed  Google Scholar 

Mohamed, A. R. et al. Dual RNA-sequencing analyses of a coral and its native symbiont during the establishment of symbiosis. Mol. Ecol. 29, 3921–3937 (2020).

Article  CAS  PubMed  Google Scholar 

Yoshioka, Y., Yamashita, H., Suzuki, G. & Shinzato, C. Larval transcriptomic responses of a stony coral, Acropora tenuis, during initial contact with the native symbiont, Symbiodinium microadriaticum. Sci. Rep. 12, 2854 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bellantuono, A. J., Dougan, K. E., Granados-Cifuentes, C. & Rodriguez-Lanetty, M. Free-living and symbiotic lifestyles of a thermotolerant coral endosymbiont display profoundly distinct transcriptomes under both stable and heat stress conditions. Mol. Ecol. 28, 5265–5281 (2019).

Article  CAS  PubMed  Google Scholar 

Levy, S. et al. A stony coral cell atlas illuminates the molecular and cellular basis of coral symbiosis, calcification, and immunity. Cell 184, 2973–2987.e18 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berkelmans, R. & van Oppen, M. J. H. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc. R. Soc. B 273, 2305–2312 (2006).

Article  PubMed  PubMed Central  Google Scholar 

Logan, C. A., Dunne, J. P., Ryan, J. S., Baskett, M. L. & Donner, S. D. Quantifying global potential for coral evolutionary response to climate change. Nat. Clim. Change 11, 537–542 (2021).

Article  Google Scholar 

Caruso, C., Hughes, K. & Drury, C. Selecting heat-tolerant corals for proactive reef restoration. Front. Mar. Sci. 8, 632027 (2021).

Buerger, P. et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci. Adv. 6, eaba2498 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ganot, P. et al. Ubiquitous macropinocytosis in anthozoans. eLife 9, e50022 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mattox, D. E. & Bailey-Kellogg, C. Comprehensive analysis of lectin-glycan interactions reveals determinants of lectin specificity. PLoS Comput. Biol. 17, e1009470 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koike, K. et al. Octocoral chemical signaling selects and controls dinoflagellate symbionts. Biol. Bull. 207, 80–86 (2004).

Article  CAS  PubMed  Google Scholar 

Wood-Charlson, E. M., Hollingsworth, L. L., Krupp, D. A. & Weis, V. M. Lectin/glycan interactions play a role in recognition in a coral/dinoflagellate symbiosis. Cell. Microbiol. 8, 1985–1993 (2006).

Article  CAS  PubMed  Google Scholar 

Kita, A., Jimbo, M., Sakai, R., Morimoto, Y. & Miki, K. Crystal structure of a symbiosis-related lectin from octocoral. Glycobiology 25, 1016–1023 (2015).

Article  CAS  PubMed  Google Scholar 

Wood-Charlson, E. M. & Weis, V. M. The diversity of C-type lectins in the genome of a basal metazoan, Nematostella vectensis. Dev. Comp. Immunol. 33, 881–889 (2009).

Article  CAS  PubMed  Google Scholar 

Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019).

Article  CAS  PubMed  Google Scholar 

Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999).

Article  CAS  PubMed  Google Scholar 

Siebert, S. et al. Stem cell differentiation trajectories in Hydra resolved at single-cell resolution. Science 365, eaav9314 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kotliar, D. et al. Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-seq. eLife 8, e43803 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).

Article  CAS  PubMed  Google Scholar 

Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

Article  CAS  PubMed  Google Scholar 

Schwarz, J. A., Krupp, D. A. & Weis, V. M. Late larval development and onset of symbiosis in the scleractinian coral Fungia scutaria. Biol. Bull. 196, 70–79 (1999).

Article  CAS  PubMed  Google Scholar 

Taban, Q., Mumtaz, P. T., Masoodi, K. Z., Haq, E. & Ahmad, S. M. Scavenger receptors in host defense: from functional aspects to mode of action. Cell Commun. Signal. 20, 2 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neubauer, E. F., Poole, A. Z., Weis, V. M. & Davy, S. K. The scavenger receptor repertoire in six cnidarian species and its putative role in cnidarian-dinoflagellate symbiosis. PeerJ 4, e2692 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Silverstein, R. L. & Febbraio, M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci. Signal. 2, re3 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Stuart, L. M. et al. Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. J. Cell Biol. 170, 477–485 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reichhardt, M. P., Holmskov, U. & Meri, S. SALSA—a dance on a slippery floor with changing partners. Mol. Immunol. 89, 100–110 (2017).

留言 (0)

沒有登入
gif