Targeted accurate RNA consensus sequencing (tARC-seq) reveals mechanisms of replication error affecting SARS-CoV-2 divergence

Snijder, E. J., Decroly, E. & Ziebuhr, J. in Advances in Virus Research Vol. 96 (ed. Ziebuhr, J.) 59–126 (Academic Press, 2016).

Bradley, C. C., Gordon, A. J. E., Halliday, J. A. & Herman, C. Transcription fidelity: new paradigms in epigenetic inheritance, genome instability and disease. DNA Repair 81, 102652 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Drake, J. W. Rates of spontaneous mutation among RNA viruses. Proc. Natl Acad. Sci. USA 90, 4171–4175 (1993).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanjuán, R., Nebot, M. R., Chirico, N., Mansky, L. M. & Belshaw, R. Viral mutation rates. J. Virol. 84, 9733–9748 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Acevedo, A., Brodsky, L. & Andino, R. Mutational and fitness landscapes of an RNA virus revealed through population sequencing. Nature 505, 686–690 (2014).

Article  CAS  PubMed  Google Scholar 

Smith, E. C., Sexton, N. R. & Denison, M. R. Thinking outside the triangle: replication fidelity of the largest RNA viruses. Annu. Rev. Virol. 1, 111–132 (2014).

Article  CAS  PubMed  Google Scholar 

Eckerle, L. D. et al. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog. 6, e1000896 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Koyama, T., Platt, D. & Parida, L. Variant analysis of SARS-CoV-2 genomes. Bull. World Health Organ. 98, 495–504 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Wang, S. et al. Molecular evolutionary characteristics of SARS‐CoV‐2 emerging in the United States. J. Med. Virol. 94, 310–317 (2022).

Article  CAS  PubMed  Google Scholar 

Tay, J. H., Porter, A. F., Wirth, W. & Duchene, S. The emergence of SARS-CoV-2 variants of concern is driven by acceleration of the substitution rate. Mol. Biol. Evol. 39, msac013 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Giorgio, S., Martignano, F., Torcia, M. G., Mattiuz, G. & Conticello, S. G. Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2. Sci. Adv. 6, eabb5813 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reid-Bayliss, K. S. & Loeb, L. A. Accurate RNA consensus sequencing for high-fidelity detection of transcriptional mutagenesis-induced epimutations. Proc. Natl Acad. Sci. USA 114, 9415–9420 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Acevedo, A. & Andino, R. Library preparation for highly accurate population sequencing of RNA viruses. Nat. Protoc. 9, 1760–1769 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Traverse, C. C. & Ochman, H. Conserved rates and patterns of transcription errors across bacterial growth states and lifestyles. Proc. Natl Acad. Sci. USA 113, 3311–3316 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, W. & Lynch, M. Universally high transcript error rates in bacteria. Elife 9, e54898 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Traverse, C. C. & Ochman, H. A genome-wide assay specifies only GreA as a transcription fidelity factor in Escherichia coli. G3 8, 2257–2264 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618 (2007).

Article  CAS  PubMed  Google Scholar 

Sanjuán, R., Moya, A. & Elena, S. F. The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proc. Natl Acad. Sci. USA 101, 8396–8401 (2004).

Article  PubMed  PubMed Central  Google Scholar 

Wang, C. et al. Identification of evolutionarily stable functional and immunogenic sites across the SARS-CoV-2 proteome and greater coronavirus family. Bioinformatics 37, 4033–4040 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou, Y. J. et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science 370, 1464–1468 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fitzsimmons, W. J. et al. A speed–fidelity trade-off determines the mutation rate and virulence of an RNA virus. PLoS Biol. 16, e2006459 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Aksamentov, I., Roemer, C., Hodcroft, E. B. & Neher, R. A. Nextclade: clade assignment, mutation calling and quality control for viral genomes. J. Open Source Softw. 6, 3773 (2021).

Article  Google Scholar 

Chung, C. et al. Evolutionary conservation of the fidelity of transcription. Nat. Commun. 14, 1547 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei, L. Retrospect of the two-year debate: what fuels the evolution of SARS-CoV-2: RNA editing or replication error? Curr. Microbiol. 80, 151 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakata, Y. et al. Cellular APOBEC3A deaminase drives mutations in the SARS-CoV-2 genome. Nucleic Acids Res. 51, 783–795 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, K. et al. The roles of APOBEC-mediated RNA editing in SARS-CoV-2 mutations, replication and fitness. Sci. Rep. 12, 14972 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, D. et al. The architecture of SARS-CoV-2 transcriptome. Cell 181, 914–921.e10 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alonso, S., Izeta, A., Sola, I. & Enjuanes, L. Transcription regulatory sequences and mRNA expression levels in the coronavirus transmissible gastroenteritis virus. J. Virol. 76, 1293–1308 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garushyants, S. K., Rogozin, I. B. & Koonin, E. V. Template switching and duplications in SARS-CoV-2 genomes give rise to insertion variants that merit monitoring. Commun. Biol. 4, 1343 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abraham, M. & Hazkani-Covo, E. Protein innovation through template switching in the Saccharomyces cerevisiae lineage. Sci. Rep. 11, 22558 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, H. et al. Nucleocapsid mutations R203K/G204R increase the infectivity, fitness, and virulence of SARS-CoV-2. Cell Host Microbe 29, 1788–1801.e6 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bar-On, Y. M., Flamholz, A., Phillips, R. & Milo, R. SARS-CoV-2 (COVID-19) by the numbers. Elife 9, e57309 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Moeller, N. H. et al. Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN. Proc. Natl Acad. Sci. USA 119, e2106379119 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baddock, H. T. et al. Characterization of the SARS-CoV-2 ExoN (nsp14ExoN–nsp10) complex: implications for its role in viral genome stability and inhibitor identification. Nucleic Acids Res. 50, 1484–1500 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ogando, N. S. et al. The enzymatic activity of the nsp14 exoribonuclease is critical for replication of MERS-CoV and SARS-CoV-2. J. Virol. 94, e01246-20 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Hastings, P. J., Ira, G. & Lupski, J. R. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet. 5, e1000327 (2009).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif