Applicability of Nanoparticle Coating in Bone Density Evaluation Using Gaussian-Weighted Linear Frequency-Modulated Thermal Wave Imaging

Nair, L.S. and Laurencin, C.T., Polymers as biomaterials for tissue engineering and controlled drug delivery, Adv. Biochem. Eng. Biotechnol., 2006, vol. 102, pp. 47–90. https://doi.org/10.1007/b13724

Article  CAS  Google Scholar 

Hench, L.L., Biomaterials: A forecast for the future, Biomaterials, 1998, vol. 19, no. 16, pp. 1419–1423. https://doi.org/10.1016/s0142-9612(98)00133-1

Article  CAS  Google Scholar 

Nassar, E.J., et al., Biomaterials and sol–gel process: A methodology for the preparation of functional materials, in: Biomaterials Science and Engineering, Pignatello, R., Ed., London: IntechOpen, 2011.

Google Scholar 

Agrawal, C. M., Reconstructing the human body using biomaterials, J. Med., 1998, vol. 50, no. 1, pp. 31–35. https://doi.org/10.1007/s11837-998-0064-5

Article  CAS  Google Scholar 

Bronzino, J.D., The Biomedical Engineering Handbook, Boca Raton: CRC Press, 2000, 2nd Ed.

Google Scholar 

Yoruc, A.B.H. and Sener, B.C., Biomaterials, in: A Roadmap of Biomedical Engineers and Milestones, Kara, S., Ed., 2012.

Google Scholar 

Campoccia, D., Montanaro, L., and Arciola, C.R., A review of the biomaterials technologies for infection-resistant surfaces, Biomaterials, 2013, vol. 34 (34), pp. 8533–8554. https://doi.org/10.1016/j.biomaterials.2013.07.089

Article  CAS  Google Scholar 

Chaloupka, K., Malam, Y., and Seifalian, A.M., Nanosilver as a new generation of nanoproduct in biomedical applications, Trends Biotechnol., 2010, vol. 28, no. 11, pp. 580–588. https://doi.org/10.1016/j.tibtech.2010.07.006

Article  CAS  Google Scholar 

Adedoyin, A.A. and Ekenseair, A.K., Biomedical applications of magnetoresponsive scaffolds, Nano Res., 2018, vol. 11, no. 10, pp. 5049–5064. https://doi.org/10.1007/s12274-018-2198-2

Article  CAS  Google Scholar 

Maldague, X.P.V., Theory and Practice of Infrared Technology for Nondestructive Testing, Hoboken: Wiley, 2001.

Google Scholar 

Ringermacher, H.I., et al., Flash quenching for high resolution thermal depth imaging, Proc. AIP, 2004, vol. 700, pp. 477–481.

Djupkep, F.B.D., Maldague, X., Bendada, A., and Bison, P., Analysis of a new method of measurement and visualization of indoor conditions by infrared thermography, Rev. Sci. Instrum., 2013, vol. 84, no. 8, p. 084906. https://doi.org/10.1063/1.4818919

Article  CAS  Google Scholar 

Nayak, S., Edwards, D.L., Saleh, A.A., and Greenspan, S.L., Systematic review and meta-analysis of the performance of clinical risk assessment instruments for screening for osteoporosis or low bone density, Osteoporosis Int., 2015, vol. 26, no. 5, pp. 1543–1554. https://doi.org/10.1007/s00198-015-3025-1

Article  CAS  Google Scholar 

Dua, G. and Mulaveesala, R., Infrared thermography for detection and evaluation of bone density variations by non-stationary thermal wave imaging, Biomed. Phys. Eng. Express, 2017, vol. 3, no. 1, p. 017006. https://doi.org/10.1088/2057-1976/aa5b4d

Article  Google Scholar 

Sharma, A., Mulaveesala, R., Dua, G., and Kumar, N., Linear frequency modulated thermal wave imaging for estimation of osteoporosis: An analytical approach, Electron. Lett., 2020, vol. 56, no. 19, pp. 1007–1010. https://doi.org/10.1049/el.2020.0671

Article  Google Scholar 

Feng, L., et al., Lock-in thermography and its application in nondestructive evaluation, Infrared Laser Eng., 2010, vol. 39, pp. 1121–1123.

Google Scholar 

Almond, D.P. and Pickering, S.G., An analytical study of the pulsed thermography defect detection limit, J. Appl. Phys., 2012, vol. 1, p. 093510.

Article  Google Scholar 

Levy, A., Dayan, A., Ben-David, M., and Gannot, I., A new thermography-based approach to early detection of cancer utilizing magnetic nanoparticles theory simulation and in vitro validation, Nanomed. Nanotechnol. Biol. Med., 2010, vol. 6, no. 6, pp. 786–796. https://doi.org/10.1016/j.nano.2010.06.007

Article  CAS  Google Scholar 

Ohashi, Y. and Uchida, I., Applying dynamic thermography in the diagnosis of breast cancer, IEEE Eng. Med. Biol. Mag. Quarterly Mag. Eng. Med. Biol. Soc., 2000, vol. 19, no. 3, pp. 42–51. https://doi.org/10.1109/51.844379

Article  CAS  Google Scholar 

Raverkar, P., Siddiqui, J. A., Kulkarni, A., and Mulaveesala, R., Corrosion detection in mild steel using effective post-processing technique for modulated thermal imaging: A numerical study, IEEE Int. Conf. Technol. Res. Innovation Betterment Soc. (TRIBES), Raipur, 2021, pp. 1–4.

Mulaveesala, R. and Ghali, V.S., Cross-correlation based approach for thermal nondestructive characterization of carbon fiber reinforced plastics, Insight Nondestr. Test. Cond. Monit., 2011, vol. 53, no. 1, pp. 34–36. https://doi.org/10.1784/insi.2011.53.1.34

Article  CAS  Google Scholar 

Ghali, V.S., Jonnalagadda, N., and Mulaveesala, R., Three dimensional pulse compression for infrared nondestructive testing, IEEE Sens. J., 2009, vol. 9, no. 7, pp. 832–833. https://doi.org/10.1109/JSEN.2009.2024042

Article  Google Scholar 

Siddiqui, J.A., et al., Modelling of the frequency modulated thermal wave imaging process through the finite element method for nondestructive testing of a mild steel sample, Insight Nondestr. Test. Cond. Monit., 2015, vol. 57, pp. 266–268.

Article  Google Scholar 

Mulaveesala, R., Vaddi, J.S., and Singh, P., Pulse compression approach to infrared nondestructive characterization, Rev. Sci. Instrum., 2008, vol. 79, no. 9, p. 094901. https://doi.org/10.1063/1.2976673

Article  CAS  Google Scholar 

Dua, G., Mulaveesala, R., and Siddique, J.A., Effect of spectral shaping on defect detection in frequency modulated thermal wave imaging, J. Opt., 2015, vol. 17, no. 2, pp. 1–5. https://doi.org/10.1088/2040-8978/17/2/025604

Article  Google Scholar 

Sharma, A., Mulaveesala, R., and Arora, V., Novel analytical approach for estimation of thermal diffusivity and effusivity for detection of osteoporosis, IEEE Sens. J., 2020, vol. 20, no. 11, pp. 6046–6054. https://doi.org/10.1109/JSEN.2020.2973233

Article  Google Scholar 

Davidson, S.R.H., Heat transfer in bone during drilling, Science Thesis, University of Toronto, 1999.

Zhang, L., Yu, W., Zhu, D., Xie, H., and Huang, G., Enhanced thermal conductivity for nanofluids containing silver nanowires with different shapes, J. Nanomater., 2017, pp. 1–6. https://doi.org/10.1155/2017/5802016

Mulaveesala, R. and Tuli, S., Theory of frequency modulated thermal wave imaging for nondestructive subsurface defect detection, Appl. Phys. Lett., 2006, vol. 89, no. 19, p. 191913. https://doi.org/10.1063/1.2382738

Article  CAS  Google Scholar 

Arora, V. and Mulaveesala, R., Pulse compression with Gaussian weighted chirp modulated excitation for infrared thermal wave imaging, Prog. Electromagn. Res. Lett., 2014, vol. 44, pp. 133–137. https://doi.org/10.2528/PIERL13111301

Article  Google Scholar 

留言 (0)

沒有登入
gif