AI for tribology: Present and future

Meng Y G, Xu J, Jin Z M, Prakash B, Hu Y Z. A review of recent advances in tribology. Friction 8(2): 221–300 (2020)

Article  Google Scholar 

Bhushan B, Ko P L. Introduction to tribology. Appl Mech Rev 56(1): B6–B7 (2003)

Article  Google Scholar 

Grützmacher P G, Profito F J, Rosenkranz A. Multi-scale surface texturing in tribology—Current knowledge and future perspectives. Lubricants 7(11): 95 (2019)

Article  Google Scholar 

Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science 313(5786): 504–507 (2006)

Article  MathSciNet  Google Scholar 

Xu L D. Introduction: Systems science in industrial sectors. Syst Res 30(3): 211–213 (2013)

Article  Google Scholar 

Bommasani R, Hudson D A, Adeli E, Altman R, Arora S, von Arx S, Bernstein M S, Bohg J, Bosselut A, Brunskill E, et al. On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258 (2021)

Zhang C M, Lu Y. Study on artificial intelligence: The state of the art and future prospects. J Ind Inf Integr 23: 100224 (2021)

Google Scholar 

Ramakrishna S, Zhang T Y, Lu W C, Qian Q, Low J S C, Yune J H R, Tan D Z L, Bressan S, Sanvito S, Kalidindi S R. Materials informatics. J Intell Manuf 30(6): 2307–2326 (2019)

Article  Google Scholar 

Hwang B, Lee J H, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med 50(8): 1–14 (2018)

Article  Google Scholar 

Zhang Z N, Yin N, Chen S, Liu C L. Tribo-informatics: Concept, architecture, and case study. Friction 9(3): 642–655 (2021)

Article  Google Scholar 

Yin N, Xing Z G, He K, Zhang Z N. Tribo-informatics approaches in tribology research: A review. Friction 11(1): 1–22 (2023)

Article  Google Scholar 

Chen X W, Lin X T. Big data deep learning: Challenges and perspectives. IEEE Access 2: 514–525 (2014)

Article  Google Scholar 

Mozaffar M, Liao S H, Xie X Y, Saha S, Park C, Cao J, Liu W K, Gan Z T. Mechanistic artificial intelligence (mechanistic-AI) for modeling, design, and control of advanced manufacturing processes: Current state and perspectives. J Mater Process Tech 302: 117485 (2022)

Article  Google Scholar 

Tremmel S, Marian M. Machine learning in tribology—More than buzzwords? Lubricants 10(4): 68 (2022)

Article  Google Scholar 

Voukantsis D, Karatzas K, Mihailidis A, Gatsios S, Sahanas C, Bakolas V, Hoffinger C. Application of computational intelligence to the analysis of friction measurements. Tribol Trans 53(5): 748–754 (2010)

Article  Google Scholar 

Marian M, Tremmel S. Current trends and applications of machine learning in tribology—A review. Lubricants 9(9): 86 (2021)

Article  Google Scholar 

Tallian T E. Tribological design decisions using computerized databases. J Tribol 109(3): 381–386 (1987)

Article  Google Scholar 

Jones S P, Jansen R, Fusaro R L. Preliminary investigation of neural network techniques to predict tribological properties. Tribol Trans 40(2): 312–320 (1997)

Article  Google Scholar 

Wu D Z, Jennings C, Terpenny J, Gao R X, Kumara S. A comparative study on machine learning algorithms for smart manufacturing: Tool wear prediction using random forests. J Manuf Sci Eng 139(7): 071018 (2017)

Article  Google Scholar 

Chen J X. The evolution of computing: AlphaGo. Comput Sci Eng 18(4): 4–7 (2016)

Article  Google Scholar 

Haenlein M, Kaplan A. A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. Calif Manag Rev 61(4): 5–14 (2019)

Article  Google Scholar 

Paturi U M R, Palakurthy S T, Reddy N S. The role of machine learning in tribology: A systematic review. Arch Comput Meth Eng 30(2): 1345–1397 (2023)

Article  Google Scholar 

Rosenkranz A, Marian M, Profito F J, Aragon N, Shah R. The use of artificial intelligence in tribology—A perspective. Lubricants 9(1): 2 (2020)

Article  Google Scholar 

Kurdi A, Alhazmi N, Alhazmi H, Tabbakh T. Practice of simulation and life cycle assessment in tribology-A review. Materials 13(16): 3489 (2020)

Article  Google Scholar 

Huang X Y, Lin L, Zheng Q S. Theoretical study of superlubric nanogenerators with superb performances. Nano Energy 70: 104494 (2020)

Article  Google Scholar 

Najm S M, Trzepieciński T, Kowalik M. Modelling and parameter identification of coefficient of friction for deep-drawing quality steel sheets using the CatBoost machine learning algorithm and neural networks. Int J Adv Manuf Technol 124(7): 2229–2259 (2023)

Article  Google Scholar 

Hasan M S, Nosonovsky M. Triboinformatics: Machine learning algorithms and data topology methods for tribology. Surf Innov 10(4–5): 229–242 (2022)

Article  Google Scholar 

Ciulli E. Tribology and industry: From the origins to 4.0. Front Mech Eng 5: 55 (2019)

Article  Google Scholar 

Kareh K M. A tantalizing trip through tribology. Nat Phys 18: 123 (2022)

Article  Google Scholar 

Malazdrewicz S, Sadowski Ł. An intelligent model for the prediction of the depth of the wear of cementitious composite modified with high-calcium fly ash. Compos Struct 259: 113234 (2021)

Article  Google Scholar 

Dai Z D, Tong J, Ren L Q. Researches and developments of biomimetics in tribology. Chin Sci Bull 51(22): 2681–2689 (2006)

Article  Google Scholar 

Assenova E, Vencl A. Tribology and self-organization in reducing friction: A brief review. Tribomat 1(1): 35–11 (2022)

Article  Google Scholar 

Popov V L, Li Q, Lyashenko I A, Pohrt R. Adhesion and friction in hard and soft contacts: Theory and experiment. Friction 9(6): 1688–1706 (2021)

Article  Google Scholar 

Lisiecki A. Tribology and surface engineering. Coatings 9(10): 663 (2019)

Article  Google Scholar 

Vasudev H, Singh G, Bansal A, Vardhan S, Thakur L. Microwave heating and its applications in surface engineering: A review. Mater Res Express 6(10): 102001 (2019)

Article  Google Scholar 

Kumar R, Antonov M. Self-lubricating materials for extreme temperature tribo-applications. Mater Today Proc 44: 4583–4589 (2021)

Article  Google Scholar 

Greiner C, Gagel J, Gumbsch P. Solids under extreme shear: Friction-mediated subsurface structural transformations. Adv Mater 31(26): e1806705 (2019)

Article  Google Scholar 

Shah R, Woydt M, Martini A, Wong H. Green tribology. Tribol Ind 42(4): 592–596 (2020)

Article  Google Scholar 

Freschi M, Paniz A, Cerqueni E, Colella G, Dotelli G. The twelve principles of green tribology: Studies, research, and case studies—A brief anthology. Lubricants 10(6): 129 (2022)

Article  Google Scholar 

Wagner R M F, Maiti R, Carré M J, Perrault C M, Evans P C, Lewis R. Bio-tribology of vascular devices: A review of tissue/device friction research. Biotribology 25: 100169 (2021)

Article  Google Scholar 

Zhang X G, Zhang Y L, Jin Z M. A review of the bio-tribology of medical devices. Friction 10(1): 4–30 (2022)

Article  MathSciNet  Google Scholar 

Ji Y Y, Bao J S, Yin Y, Ma C. Applications of artificial intelligence in tribology. Recent Pat Mech Eng 9(3): 193–205 (2016)

Article  Google Scholar 

Rouf S, Raina A, Ul Haq M I, Naveed N. Sensors and tribological systems: Applications for industry 4.0. Ind Robot Int J Robot Res Appl 49(3): 442–460 (2022)

Article  Google Scholar 

Kügler P, Marian M, Schleich B, Tremmel S, Wartzack S. tribAIn—Towards an explicit specification of shared tribological understanding. Appl Sci 10(13): 4421 (2020)

Article  Google Scholar 

Kilic K, Toriya H, Kosugi Y, Adachi T, Kawamura Y. One-dimensional convolutional neural network for pipe jacking EPB TBM cutter wear prediction. Appl Sci 12(5): 2410 (2022)

Article  Google Scholar 

Chou J S, Yang K H, Lin J Y. Peak shear strength of discrete fiber-reinforced soils computed by machine learning and metaensemble methods. J Comput Civ Eng 30(6): 04016036 (2016)

Article  Google Scholar 

Milukow H A, Binns A D, Adamowski J, Bonakdari H, Gharabaghi B. Estimation of the Darcy-Weisbach friction factor for ungauged streams using gene expression programming and extreme learning machines. J Hydrol 568: 311–321 (2019)

Article  Google Scholar 

Nguyen T A, Ly H B, Pham B T. Backpropagation neural network-based machine learning model for prediction of soil friction angle. Math Probl Eng 2020: 8845768 (2020)

Article  Google Scholar 

Kwak N S, Ko T Y. Machine learning-based regression analysis for estimating Cerchar abrasivity index. Geomech Eng 29(3): 219–228 (2022)

Google Scholar 

Morad D, Hatzor Y H, Sagy A. Rate effects on shear deformation of rough limestone discontinuities. Rock Mech Rock Eng 52(6): 1613–1622 (2019)

Article  Google Scholar 

Wang L, Zhang D, Wang D, Feng C. A review of selected solutions on the evaluation of coal-rock cutting performances of shearer picks under complex geological conditions. Appl Sci 12(23): 12371 (2022)

Article  Google Scholar 

Ren C X, Dorostkar O, Rouet-Leduc B, Hulbert C, Strebel D, Guyer R A, Johnson P A, Carmeliet J. Machine learning reveals the state of intermittent frictional dynamics in a sheared granular fault. Geophys Res Lett 46(13): 7395–7403 (2019)

Article  Google Scholar 

Ma G, Mei J Z, Gao K, Zhao J D, Zhou W, Wang D. Machine learning bridges microslips and slip avalanches of sheared granular gouges. Earth Planet Sci Lett 579: 117366 (2022)

Article  Google Scholar 

Liu Z B, Shao J F, Xu W Y, Chen H J, Zhang Y. An extreme learning machine approach for slope stability evaluation and prediction. Nat Hazards 73(2): 787–804 (2014)

留言 (0)

沒有登入
gif