Effect of Al-Doping on Structural and Adsorption Properties of NiFe2O4 via Modified Sol–Gel Approach for CO2 Adsorption

Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915. https://doi.org/10.1016/j.jmmm.2011.10.017

Article  CAS  Google Scholar 

Pham TN, Huy TQ, Lee AT (2020) Spinel ferrite (AFe2O4)-based heterostructured designs for lithium-ion battery, environmental monitoring, and biomedical applications. RSC Adv 10:31622–31661. https://doi.org/10.1039/d0ra05133k

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chae KP, Lee JG, Kweon HS, Lee YB (2004) The crystallographic, magnetic properties of Al, Ti doped CoFe2O4 powders grown by sol-gel method. J Magn Magn Mater 283:103–108. https://doi.org/10.1016/j.jmmm.2004.05.010

Article  CAS  Google Scholar 

Zhuo M, Yang T, Fu T, Li Q (2015) High-performance humidity sensors based on electrospinning ZnFe2O4 nanotubes. RSC Adv 5:68299–68304. https://doi.org/10.1039/c5ra09903j

Article  CAS  Google Scholar 

Wang M, Ai Z, Zhang L (2008) Generalized preparation of porous nanocrystalline ZnFe2O4 superstructures from zinc ferrioxalate precursor and its superparamagnetic property. J Phys Chem C 112:13163–13170. https://doi.org/10.1021/jp804009h

Article  CAS  Google Scholar 

El Maalam K, Fkhar L, Mahhouti Z, Mounkachi O, Aitali M, Hamedoun M, Benyoussef A (2016) The effects of synthesis conditions on the magnetic properties of zinc ferrite spinel nanoparticles. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/758/1/012008

Article  Google Scholar 

Xin S, Liu S, Wang N, Han X, Wang L, Xu B, Tian Y, Liu Z, He J, Yu D (2011) Formation and properties of SrB6 single crystals synthesized under high pressure and temperature. J Alloys Compd 509:7927–7930. https://doi.org/10.1016/j.jallcom.2011.05.037

Article  CAS  Google Scholar 

Kafshgari LA, Ghorbani M, Azizi A (2019) Synthesis and characterization of manganese ferrite nanostructure by co-precipitation, sol-gel, and hydrothermal methods. Part Sci Technol 37:900–906. https://doi.org/10.1080/02726351.2018.1461154

Article  CAS  Google Scholar 

Yuan X, Xu QJ, Wang C, Liu X, Liu H, Xia Y (2015) A facile and novel organic coprecipitation strategy to prepare layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high capacity and excellent cycling stability. J Power Sources 279:157–164. https://doi.org/10.1016/j.jpowsour.2014.12.148

Article  CAS  Google Scholar 

Ren D, Shen Y, Yang Y, Shen L, Levin BDA, Yu Y, Muller DA, Abruna HD (2017) Key parameter optimization for the scalable synthesis of uniform, high-energy, and high stability LiNi0.6Mn0.2Co0.2O2 cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 9:35811–35819. https://doi.org/10.1021/acsami.7b10155

Article  CAS  PubMed  Google Scholar 

Xu L, Zhou F, Kong J, Chen Z, Chen K (2017) Synthesis of Li(Ni0.6Co0.2Mn0.2)O2 with sodium DL-lactate as an eco-friendly chelating agent and its electrochemical performances for lithium-ion batteries. Ionics 24:2261–2273. https://doi.org/10.1007/s11581-017-2363-8

Article  CAS  Google Scholar 

Zhou F, Xu L, Kong J (2017) Co-precipitation synthesis of precursor with lactic acid acting as chelating agent and the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium-ion battery. J Solid State Electrochem 22:943–952. https://doi.org/10.1007/s10008-017-3837-3

Article  CAS  Google Scholar 

MARSSIM (2000) 7 sampling and preparation for laboratory measurements. Revision 1 Chapter 7 1–28

Dai Z, Meiser F, Mohwald H (2005) Nanoengineering of iron oxide and iron oxide/silica hollow spheres by sequential layering combined with a sol-gel process. J Colloid Interface Sci 288:298–300. https://doi.org/10.1016/j.jcis.2005.02.076

Article  CAS  PubMed  Google Scholar 

Sulaiman NI, Abu Bakar M, Abu Bakar NHH, Saito N, Thai VP (2023) Modified sol-gel method for synthesis and structure characterization of ternary and quaternary ferrite- based oxides for thermogravimetrically carbon dioxide adsorption. Chem Papers 77:3051–3074. https://doi.org/10.1007/s11696-023-02687-6

Article  CAS  Google Scholar 

Al-Juaid AA, Gabal MA (2021) Effects of co-substitution of Al3+ and Cr3+ on structural and magnetic properties of nano-crystalline CoFe2O4 synthesized by the sucrose technique. J Mater Res Technol 14:10–24. https://doi.org/10.1016/j.jmrt.2021.06.023

Article  CAS  Google Scholar 

Hashim M, Alimuddin KS, Ali S, Koo BH, Chung H, Kumar R (2012) Structural, magnetic and electrical properties of Al3+ substituted Ni-Zn ferrite nanoparticles. J Alloys Compd 511:107–114. https://doi.org/10.1016/j.jallcom.2011.08.096

Article  CAS  Google Scholar 

Batoo KM (2011) Structural and electrical properties of Cu doped NiFe2O4 nanoparticles prepared through modified citrate gel method. J Phys Chem Solids 5:68–77. https://doi.org/10.1016/j.jpcs.2011.08.005

Article  CAS  Google Scholar 

Kumar KV, Paramesh D, Reddy PV (2015) Effect of aluminium doping on structural and magnetic properties of Ni–Zn ferrite nanoparticles. World J Nano Sci Eng 5:68–77. https://doi.org/10.4236/wjnse.2015.53009

Article  Google Scholar 

Bhujan B, Shanmugam AS, Tan MTT (2016) Aluminium-doped nickel copper ferrites for high-performance supercapacitors. Int J Res Chem Metall Civ Eng. 3:3–7. https://doi.org/10.15242/IJRCMCE.E0316002

Article  Google Scholar 

Sivaprakash P, Divya S, Parameshwari R, Saravanan C, Sagadevan S, Arumugam S, Esakki Muthu S (2020) Influence of Zn2+ doping towards the structural, magnetic, and dielectric properties of NiFe2O4 composite. J Mater Sci Mater Electron 31:16369–16378. https://doi.org/10.1007/s10854-020-04187-9

Article  CAS  Google Scholar 

Tanabe K, Yamaguchi T (1963) Instructions for use basicity and acidity of solid surfaces. J Res Inst Catal Hokkaido Univ. 11:179–184

Google Scholar 

Lu CM, Liu J, Xiao K, Harris AT (2010) Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles. Chem Eng J 156:465–470. https://doi.org/10.1016/j.cej.2009.10.067

Article  CAS  Google Scholar 

Sagheer R, Khalil M, Abbas V, Kayani ZN, Tariq U, Ashraf F (2020) Effect of Mg doping on structural, morphological, optical and thermal properties of ZnO nanoparticles. Optik 200:163428. https://doi.org/10.1016/j.ijleo.2019.163428

Article  CAS  Google Scholar 

Yao H, Ning X, Zhao H, Hao A, Ismail M (2021) Effect of Gd-Doping on structural, optical, and magnetic properties of NiFe2O4 as-prepared thin films via facile sol-gel approach. ACS Omega 6:6305–6311. https://doi.org/10.1021/acsomega.0c06097

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shinde BL (2019) Cation distribution study of Al3+ doped Zn–Ni–Cu ferrite. Int J Res Ana Rev. 6:750–753. https://doi.org/10.1729/Journal.20051

Article  Google Scholar 

Raghavender AT, Shirsath SE, Pajic D, Zadro K, Milekovic T, Jadhav KM, Kumar KV (2012) Effect of Al doping on the cation distribution in copper ferrite nanoparticles and their structural and magnetic properties. J Korean Phys Soc 61:568–574. https://doi.org/10.3938/jkps.61.568

Article  CAS  Google Scholar 

Waghmare SP, Borikar DM, Rewatkar KG (2017) Impact of Al doping on structural and magnetic properties of Co-Ferrite. Mater Today Proc 4:11866–11872. https://doi.org/10.1016/j.matpr.2017.09.105

Article  Google Scholar 

Rather SU, Lemine OM (2020) Effect of Al doping in zinc ferrite nanoparticles and their structural and magnetic propertie. J Alloys Compd 812:152058. https://doi.org/10.1016/j.jallcom.2019.152058

Article  CAS  Google Scholar 

Hiti El (1996) AC electrical conductivity of Ni–Mg ferrites. J Phys D: Appl Phys 29:501–505. https://doi.org/10.1088/0022-3727/29/3/002

Article  Google Scholar 

Priyadharsini P, Pradeep A, Rao PS, Chandrasekaran G (2009) Structural, spectroscopic and magnetic study of nanocrystalline Ni-Zn ferrites. Mater Chem Phys 116:207–213. https://doi.org/10.1016/j.matchemphys.2009.03.011

Article  CAS  Google Scholar 

Kesavamoorthi R, Vigneshwaran AN, Sanyal V, Raja CR (2016) Synthesis and characterization of nickel ferrite nanoparticles by sol - gel auto combustion method. J Chem Phar Sci 9:160–162

CAS  Google Scholar 

Shayesteh SF, Dizgah AA (2013) Effect of doping and annealing on the physical properties of ZnO: Mg nanoparticles. Pramana J Phys 81:319–330. https://doi.org/10.1007/s12043-013-0562-z

Article  CAS  Google Scholar 

Pal M, Pal U, Jiménez JMGY, Pérez-Rodríguez F (2012) Effects of crystallization and dopant concentration on the emission behavior of TiO2: Eu nanophosphors. Nanoscale Res Lett 7:1–12. https://doi.org/10.1186/1556-276X-7-1

Article  PubMed  PubMed Central  Google Scholar 

Sulaiman NI, Abu Bakar M, Abu Bakar NHH, Hussin MH (2019) Sol-gel synthesis of barium hexaferrite and their catalytic application in methyl ester synthesis. IOP Conf Ser Mater Sci Eng 509:012103. https://doi.org/10.1088/1757-899X/509/1/012103

Article  CAS  Google Scholar 

Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

Article  CAS  Google Scholar 

Sing KSW (1982) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 54:2201–2218. https://doi.org/10.1515/iupac.57.0007

Article  Google Scholar 

Yang Y, Shukla P, Wang S, Rudolph V, Chen XM, Zhu Z (2013) Significant improvement of surface area and CO2 adsorption of Cu-BTC via solvent exchange activation. RSC Adv 3:17065–17072. https://doi.org/10.1039/c3ra42519c

Article  CAS  Google Scholar 

Owolabi TO, Saleh TA, Olusayo O, Souiyah M, Oyeneyin OE (2021) Modeling the specific surface area of doped spinel ferrite nanomaterials using hybrid intelligent computational method. J Nanomater.

留言 (0)

沒有登入
gif