Effects of pore size on the lubrication properties of porous polyimide retainer material

Wu L F, Zhang Z Z, Yang M M, Yuan J Y, Li P L, Chen Z J, Men X H. Surface modification of YS-20 with polydopamine for improving the tribological properties of polyimide composites. Friction 10(3): 411–121 (2022)

Article  Google Scholar 

Song J F, Yu Y H, Zhao G, Qiu J H, Ding Q J. Comparative study of tribological properties of insulated and conductive polyimide composites. Friction 8(3): 507–516 (2020)

Article  Google Scholar 

Duan C J, He R, Li S, Shao M C, Yang R, Tao L M, Wang C, Yuan P, Wang T M, Wang Q H. Exploring the friction and wear behaviors of Ag—Mo hybrid modified thermosetting polyimide composites at high temperature. Friction 8(5): 893–904 (2020)

Article  Google Scholar 

Yang J, Xiao Q F, Lin Z, Li Y, Jia X H, Song H J. Growth of ultra-dense MoS2 nanosheets on carbon fibers to improve the mechanical and tribological properties of polyimide composites. Friction 9(5): 1150–1162 (2021)

Article  Google Scholar 

Qi H M, Zhang G, Zheng Z Q, Yu J X, Hu C. Tribological properties of polyimide composites reinforced with fibers rubbing against Al2O3. Friction 9(2): 301–314 (2021)

Article  Google Scholar 

Xie C J, Wang K J. Synergistic modification of the tribological properties of polytetrafluoroethylene with polyimide and boron nitride. Friction 9(6): 1474–1491 (2021)

Article  Google Scholar 

Marchetti M, Meurisse M H, Vergne P, Sicre J, Durand M. Porous polyimide as oil reservoir in space mechanisms. In: Proceedings of the International Tribology Conference ITC2000, Nagasaki, Japan, 2000.

Gardos M N, Tiernan T O, Taylor M L, Walters D C, Terwilliger D T, Fehrenbacher L L. Sorption of lubricant additives by porous plastic retainer materials. ASLE Trans 22(3): 293–300 (1979)

Article  Google Scholar 

Bertrand P A. Oil absorption into cotton—phenolic material. J Mater Res 8(7): 1749–1757 (1993)

Article  Google Scholar 

Liu W M, Weng L J, Sun J Y. Handbook of Space Lubricating Materials and Technology. Beijing: Science Press, 2009. (in Chinese)

Google Scholar 

Chen W, Zhu P, Liang H, Wang W. Molecular dynamics simulations of lubricant recycling in porous polyimide retainers of bearing. Langmuir 37(7): 2426–2435 (2021)

Article  Google Scholar 

Shao M C, Li S, Duan C J, Yang Z H, Qu C H, Zhang Y M, Zhang D, Wang C, Wang T M, Wang Q H. Cobweb-like structural stimuli-responsive composite with oil warehouse and transportation system for oil storage and recyclable smart-lubrication. ACS Appl Mater Interfaces 10(48): 41699–41706 (2018)

Article  Google Scholar 

Pu Y P, Chen J M, Zhao P, Xue Q J. A model for the calculation of the micro-pores number of compressively molded polyimide porous materials. Adv Tribol 216–219 (2009)

Wang J Q, Zhao H J, Huang W, Wang X L. Investigation of porous polyimide lubricant retainers to improve the performance of rolling bearings under conditions of starved lubrication. Wear 380-381: 52–58 (2017)

Article  Google Scholar 

Jia Z N, Yan Y H, Wang W Z. Preparation and tribological properties of PI oil-bearing material with controllable pore size. Ind Lubr Tribol 69(2): 88–94 (2017)

Article  Google Scholar 

Von Gutfeld R J, Srinivasan R. Electrostatic collection of debris resulting from 193 nm laser etching of polyimide. Appl Phys Lett 51(1): 15–17 (1987)

Article  Google Scholar 

Qin Z Y, Huang X Y, Wang D K, He T B, Wang Q Y, Zhang Y S. Formation of conducting layers on excimer-laser-irradiated polyimide film surfaces. Surf Interface Anal 29(8): 514–518 (2000)

Article  Google Scholar 

Ma Y W, Jeong M Y, Lee S M, Shin B S. Fabrication of a high-density nano-porous structure on polyimide by using ultraviolet laser irradiation. J Korean Phys Soc 68(5): 668–673 (2016)

Article  Google Scholar 

Du Q F, Chen T, Liu J G, Zeng X Y. Surface microstructure and chemistry of polyimide by single pulse ablation of picosecond laser. Appl Surf Sci 434: 588–595 (2018)

Article  Google Scholar 

Ye J Z, Li J B, Qing T, Huang H B, Zhou N N. Effects of surface pore size on the tribological properties of oil-impregnated porous polyimide material. Wear 484-485: 204042 (2021)

Article  Google Scholar 

Zhang D, Wang T M, Wang Q H, Wang C. Selectively enhanced oil retention of porous polyimide bearing materials by direct chemical modification. J Appl Polym Sci 134(29): 45106 (2017)

Article  Google Scholar 

Wang C, Zhang D, Wang Q H, Ruan H W, Wang T M. Effect of porosity on the friction properties of porous polyimide impregnated with poly-α-olefin in different lubrication regimes. Tribol Lett 68(4): 102 (2020)

Article  Google Scholar 

MacNeill G F. Porous Material Development for Instrument-ball-bearing Retainer Applications. Cambridge (USA): M.I.T. Charles Stark Draper Laboratory, 1973.

Google Scholar 

Bertrand P A, Carré D J. Oil exchange between ball bearings and porous polyimide ball bearing retainers. Tribol Trans 40(2): 294–302 (1997)

Article  Google Scholar 

Marchetti M, Meurisse M H, Vergne P, Sicre J, Durand M. Lubricant supply by porous reservoirs in space mechanisms. Tribol Ser 38: 777–785 (2000)

Article  Google Scholar 

Marchetti M, Meurisse M H, Vergne P, Sicre J, Durand M. Analysis of oil supply phenomena by sintered porous reservoirs. Tribol Lett 10(3): 163–170 (2001)

Article  Google Scholar 

Chen W B, Wang W Z, Liang H, Zhu P Z. Molecular dynamics simulations of lubricant outflow in porous polyimide retainers of bearings. Langmuir 37(30): 9162–9169 (2021)

Article  Google Scholar 

Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1): 1–19 (1995)

Article  MATH  Google Scholar 

Marrink S J, de Vries A H, Mark A E. Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108(2): 750–760 (2004)

Article  Google Scholar 

Marrink S J, Risselada H J, Yefimov S, Tieleman D P, de Vries A H. The MARTINI force field: Coarse grained model for biomolecular simulations. J Phys Chem B 111(27): 7812–7824 (2007)

Article  Google Scholar 

Liu Y Q, Wang W Z, Liang H, Qing T, Wang Y L, Zhang S H. Nonlinear dynamic behavior of angular contact ball bearings under microgravity and gravity. Int J Mech Sci 183: 105782 (2020)

Article  Google Scholar 

留言 (0)

沒有登入
gif