Centenarians have a diverse gut virome with the potential to modulate metabolism and promote healthy lifespan

Odamaki, T. et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 16, 90 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Sato, Y. et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 599, 458–464 (2021).

Article  CAS  PubMed  Google Scholar 

Goronzy, J. J. & Weyand, C. M. Understanding immunosenescence to improve responses to vaccines. Nat. Immunol. 14, 428–436 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gregory, A. C. et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724–740.e8 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adiliaghdam, F. & Jeffrey, K. L. Illuminating the human virome in health and disease. Genome Med. 12, 66 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Sutton, T. D. S. & Hill, C. Gut bacteriophage: current understanding and challenges. Front. Endocrinol. 10, 784 (2019).

Article  Google Scholar 

Liang, G. et al. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature 581, 470–474 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shamash, M. & Maurice, C. F. Phages in the infant gut: a framework for virome development during early life. ISME J. 16, 323–330 (2022).

Article  PubMed  Google Scholar 

Gogokhia, L. et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25, 285–299.e8 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).

Article  CAS  PubMed  Google Scholar 

Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Kieft, K. et al. Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages. Nat. Commun. 12, 3503 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kieft, K. et al. Virus-associated organosulfur metabolism in human and environmental systems. Cell Rep. 36, 109471 (2021).

Article  CAS  PubMed  Google Scholar 

Mayneris-Perxachs, J. et al. Caudovirales bacteriophages are associated with improved executive function and memory in flies, mice, and humans. Cell Host Microbe 30, 340–356.e8 (2022).

Article  CAS  PubMed  Google Scholar 

Nissen, J. N. et al. Improved metagenome binning and assembly using deep variational autoencoders. Nat. Biotechnol. 39, 555–560 (2021).

Article  CAS  PubMed  Google Scholar 

Johansen, J. et al. Genome binning of viral entities from bulk metagenomics data. Nat. Commun. 13, 965 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, L. et al. A cross-sectional study of compositional and functional profiles of gut microbiota in sardinian centenarians. mSystems 4, e00325-19 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Nayfach, S. et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat. Microbiol. 6, 960–970 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Low, S. J., Džunková, M., Chaumeil, P.-A., Parks, D. H. & Hugenholtz, P. Evaluation of a concatenated protein phylogeny for classification of tailed double-stranded DNA viruses belonging to the order Caudovirales. Nat. Microbiol. 4, 1306–1315 (2019).

Article  CAS  PubMed  Google Scholar 

Kieft, K. & Anantharaman, K. Deciphering active prophages from metagenomes. mSystems 7, e0008422 (2022).

Article  PubMed  Google Scholar 

Vatanen, T. et al. Mobile genetic elements from the maternal microbiome shape infant gut microbial assembly and metabolism. Cell 185, 4921–4936.e15 (2022).

Article  CAS  PubMed  Google Scholar 

Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stražar, M. et al. Gut microbiome-mediated metabolism effects on immunity in rural and urban African populations. Nat. Commun. 12, 4845 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Shkoporov, A. N. et al. ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis. Nat. Commun. 9, 4781 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Murphy, J., Mahony, J., Ainsworth, S., Nauta, A. & van Sinderen, D. Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl. Environ. Microbiol. 79, 7547–7555 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gulyaeva, A. et al. Discovery, diversity, and functional associations of crAss-like phages in human gut metagenomes from four Dutch cohorts. Cell Rep. 38, 110204 (2022).

Article  CAS  PubMed  Google Scholar 

Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527–541.e5 (2019).

Article  CAS  PubMed  Google Scholar 

Roux, S. et al. Minimum Information about an Uncultivated Virus Genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).

Article  CAS  PubMed  Google Scholar 

Santoro, A. et al. Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell. Mol. Life Sci. 75, 129–148 (2018).

Article  CAS  PubMed  Google Scholar 

Redgwell, T. A. et al. Prophages in the infant gut are largely induced, and may be functionally relevant to their hosts. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2021.06.25.449885v1 (2021).

Sovran, B. et al. Age-associated impairment of the mucus barrier function is associated with profound changes in microbiota and immunity. Sci. Rep. 9, 1437 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Diard, M. et al. Inflammation boosts bacteriophage transfer between Salmonella spp. Science 355, 1211–1215 (2017).

Article  CAS  PubMed  Google Scholar 

Biagi, E. et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5, e10667 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Heidelberg, J. F. et al. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat. Biotechnol. 22, 554–559 (2004).

Article  CAS  PubMed  Google Scholar 

Buret, A. G., Allain, T., Motta, J.-P. & Wallace, J. L. Effects of hydrogen sulfide on the microbiome: from toxicity to therapy. Antioxid. Redox Signal. 36, 211–219 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stacy, A. et al. Infection trains the host for microbiota-enhanced resistance to pathogens. Cell 184, 615–627.e17 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

Article  CAS  PubMed  Google Scholar 

Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif