Expression of microRNAs in leukocytes and serum of asbestosis patients

Cheng YY, Rath EM, Linton A, Yuen ML, Takahashi K, Lee K. The current understanding of asbestos-induced epigenetic changes associated with lung cancer. Lung Cancer. 2020;11:1–11.

CAS  PubMed  PubMed Central  Google Scholar 

Commission E. Communication from the commission to the European Parliament, the council, the European economic and social committee and the Committee of the regions on working towards an asbestos-free future: a European approach to addressing the health risks of asbestos. European Commission; 2022. file:///C:/Users/jlu-su/Downloads/COM_2022_488_1_EN_ACT_part1_v5.pdf

Furuya S, Chimed-Ochir O, Takahashi K, David A, Takala J. Global Asbestos Disaster. Int J Environ Res Public Health. 2018;15(5):1000.

Article  PubMed  PubMed Central  Google Scholar 

Marsili D, Terracini B, Santana VS, Ramos-Bonilla JP, Pasetto R, Mazzeo A, Loomis D, Comba P, Algranti E. Prevention of asbestos-related disease in countries currently using asbestos. Int J Environ Res Public Health. 2016;13(5):494.

Article  PubMed  PubMed Central  Google Scholar 

Bersimbaev R, Bulgakova O, Aripova A, Kussainova A, Ilderbayev O. Role of microRNAs in lung carcinogenesis induced by asbestos. J Pers Med. 2021;11(2):97.

Article  PubMed  PubMed Central  Google Scholar 

Society AT. Diagnosis and initial management of nonmalignant diseases related to asbestos. Am J Respir Crit Care Med. 2004;170(6):691–715.

Article  Google Scholar 

Pairon J-C, Laurent F, Rinaldo M, Clin B, Andujar P, Ameille J, Brochard P, Chammings S, Ferretti G, Galateau-Sallé F, et al. Pleural plaques and the risk of pleural mesothelioma. J Natl Cancer Inst. 2013;105(4):293–301.

Article  CAS  PubMed  Google Scholar 

Gevenois P, de Maertelaer V, Madani A, Winant C, Sergent G, De Vuyst P. Asbestosis, pleural plaques and diffuse pleural thickening: three distinct benign responses to asbestos exposure. Eur Respir J. 1998;11(5):1021–7.

Article  CAS  PubMed  Google Scholar 

Schneider J, Brückel B, Fink L, Woitowitz H-J. Pulmonary fibrosis following household exposure to asbestos dust? J Occup Med Toxicol. 2014;9(1):39.

Article  PubMed  PubMed Central  Google Scholar 

Mukherjee S, de Klerk N, Palmer LJ, Olsen NJ, Pang SC, William MA. Chest pain in asbestos-exposed individuals with benign pleural and parenchymal disease. Am J Respir Crit Care Med. 2000;162(5):1807–11.

Article  CAS  PubMed  Google Scholar 

Hillerdal G. Pleural plaques and risk for bronchial carcinoma and mesothelioma. A prospective study. Chest. 1994;105(1):144–50.

Article  CAS  PubMed  Google Scholar 

Hillerdal G, Henderson DW. Asbestos, asbestosis, pleural plaques and lung cancer. Scand J Work Environ Health. 1997;23(2):93–103.

Article  CAS  PubMed  Google Scholar 

Helmig S, Belwe A, Schneider J. Association of transforming growth factor beta1 gene polymorphisms and asbestos-induced fibrosis and tumors. J Investig Med. 2009;57(5):655–61.

Article  CAS  PubMed  Google Scholar 

Helmig S, Döhrel J, Schneider J. Decreased Cyp2E1 mRNA expression in human leucocytes in patients with fibrotic and inflammatory lung diseases. Int J Mol Med. 2010;26(1):143–9.

Article  CAS  PubMed  Google Scholar 

Helmig S, Aliahmadi N, Schneider J. Tumour necrosis factor-alpha gene polymorphisms in asbestos-induced diseases. Biomarkers. 2010;15(5):400–9.

Article  CAS  PubMed  Google Scholar 

Helmig S, Grossmann M, Wübbeling J, Schneider J. Interleukin gene polymorphisms in pneumoconiosis. Int J Mol Med. 2012;30(2):401–8.

Article  CAS  PubMed  Google Scholar 

Helmig S, Dopp E, Wenzel S, Walter D, Schneider J. Induction of altered mRNA expression profiles caused by fibrous and granular dust. Mol Med Rep. 2014;9(1):217–28.

Article  CAS  PubMed  Google Scholar 

Helmig S, Walter D, Putzier J, Maxeiner H, Wenzel S, Schneider J. Oxidative and cytotoxic stress induced by inorganic granular and fibrous particles. Mol Med Rep. 2018;17(6):8518–29.

CAS  PubMed  Google Scholar 

Nagai H, Toyokuni S. Biopersistent fiber-induced inflammation and carcinogenesis: lessons learned from asbestos toward safety of fibrous nanomaterials. Arch Biochem Biophys. 2010;502(1):1–7.

Article  CAS  PubMed  Google Scholar 

Weber DG, Johnen G, Bryk O, Jöckel KH, Brüning T. Identification of miRNA-103 in the cellular fraction of human peripheral blood as a potential biomarker for malignant mesothelioma–a pilot study. PLoS ONE. 2012;7(1): e30221.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20(8):460–9.

Article  CAS  PubMed  Google Scholar 

Pogribny IP. MicroRNAs as biomarkers for clinical studies. Exp Biol Med. 2018;243(3):283–90.

Article  CAS  Google Scholar 

Barwari T, Joshi A, Mayr M. MicroRNAs in cardiovascular disease. J Am Coll Cardiol. 2016;68(23):2577–84.

Article  CAS  PubMed  Google Scholar 

Pascut D, Krmac H, Gilardi F, Patti R, Calligaris R, Crocè LS, Tiribelli C. A comparative characterization of the circulating miRNome in whole blood and serum of HCC patients. Sci Rep. 2019;9(1):8265.

Article  PubMed  PubMed Central  Google Scholar 

Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell. 2008;132(1):9–14.

Article  CAS  PubMed  Google Scholar 

O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018. https://doi.org/10.3389/fendo.2018.00402.

Article  Google Scholar 

Laterza OF, Lim L, Garrett-Engele PW, Vlasakova K, Muniappa N, Tanaka WK, Johnson JM, Sina JF, Fare TL, Sistare FD, et al. Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem. 2009;55(11):1977–83.

Article  CAS  PubMed  Google Scholar 

Siracusa J, Koulmann N, Bourdon S, Goriot M-E, Banzet S. Circulating miRNAs as biomarkers of acute muscle damage in rats. Am J Pathol. 2016;186(5):1313–27.

Article  CAS  PubMed  Google Scholar 

Weber JA, Baxter DH, Zhang S, Huang DY, How Huang K, Jen Lee M, Galas DJ, Wang K. The MicroRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Solé C, Moliné T, Vidal M, Ordi-Ros J, Cortés-Hernández J. An exosomal urinary miRNA signature for early diagnosis of renal fibrosis in lupus nephritis. Cells. 2019;8(8):773.

Article  PubMed  PubMed Central  Google Scholar 

Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J, Wainscoat JS, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141(5):672–5.

Article  PubMed  Google Scholar 

Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci. 2008;105(30):10513–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Habib EM, Nosiar NA, Eid MA, Taha AM, Sherief DE, Hassan AE, Abdel Ghafar MT. MiR-150 expression in chronic myeloid leukemia: relation to imatinib response. Lab Med. 2021;53(1):58–64.

Article  Google Scholar 

Habib EM, Nosiar NA, Eid MA, Taha AM, Sherief DE, Hassan AE, Abdel Ghafar MT. Circulating miR-146a expression predicts early treatment response to imatinib in adult chronic myeloid leukemia. J Investig Med. 2021;69(2):333–7.

Article  PubMed  Google Scholar 

Häusler SF, Keller A, Chandran PA, Ziegler K, Zipp K, Heuer S, Krockenberger M, Engel JB, Hönig A, Scheffler M, et al. Whole blood-derived miRNA profiles as potential new tools for ovarian cancer screening. Br J Cancer. 2010;103(5):693–700.

Article  PubMed  PubMed Central  Google Scholar 

Andersen M, Grauslund M, Ravn J, Sørensen JB, Andersen CB, Santoni-Rugiu E. Diagnostic potential of miR-126, miR-143, miR-145, and miR-652 in malignant pleural mesothelioma. J Mol Diagn. 2014;16(4):418–30.

Article  CAS  PubMed  Google Scholar 

Wang HJ, Liu H, Lin YH, Zhang SJ. MiR-32-5p knockdown inhibits epithelial to mesenchymal transition and renal fibrosis by targeting SMAD7 in diabetic nephropathy. Hum Exp Toxicol. 2021;40(4):587–95.

Article  CAS  PubMed  Google Scholar 

Mu S, Kang B, Zeng W, Sun Y, Yang F. MicroRNA-143-3p inhibits hyperplastic scar formation by targeting connective tissue growth factor CTGF/CCN2 via the Akt/mTOR pathway. Mol Cell Biochem. 2016;416(1):99–108.

留言 (0)

沒有登入
gif