Targeting Pericytes for Functional Recovery in Ischemic Stroke

Abbott, N. J. (2002). Astrocyte-endothelial interactions and blood-brain barrier permeability. Journal of Anatomy, 200(6), 629–638. https://doi.org/10.1046/j.1469-7580.2002.00064.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abbott, N. J., Rönnbäck, L., & Hansson, E. (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews. Neuroscience, 7(1), 41–53. https://doi.org/10.1038/nrn1824

Article  CAS  PubMed  Google Scholar 

Al Ahmad, A., Gassmann, M., & Ogunshola, O. O. (2009). Maintaining blood-brain barrier integrity: Pericytes perform better than astrocytes during prolonged oxygen deprivation. Journal of Cellular Physiology, 218(3), 612–622. https://doi.org/10.1002/jcp.21638

Article  CAS  PubMed  Google Scholar 

Albers, G. W., Marks, M. P., Kemp, S., Christensen, S., Tsai, J. P., Ortega-Gutierrez, S., McTaggart, R. A., Torbey, M. T., Kim-Tenser, M., Leslie-Mazwi, T., Sarraj, A., Kasner, S. E., Ansari, S. A., Yeatts, S. D., Hamilton, S., Mlynash, M., Heit, J. J., Zaharchuk, G., Kim, S., et al. (2018). Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. The New England Journal of Medicine, 378(8), 708–718. https://doi.org/10.1056/NEJMoa1713973

Article  PubMed  PubMed Central  Google Scholar 

Ames, A., Wright, R. L., Kowada, M., Thurston, J. M., & Majno, G. (1968). Cerebral ischemia: II—The no-reflow phenomenon. The American Journal of Pathology, 52(2), 437–453.

PubMed  PubMed Central  Google Scholar 

Ando, M., Kakigi, A., & Takeuchi, S. (1999). Elongated pericyte-like cells connect discrete capillaries in the cochlear stria vascularis of gerbils and rats. Cell and Tissue Research, 296(3), 673–676. https://doi.org/10.1007/s004410051327

Article  CAS  PubMed  Google Scholar 

Arai, K. (2020). Can oligodendrocyte precursor cells be a therapeutic target for mitigating cognitive decline in cerebrovascular disease? Journal of Cerebral Blood Flow and Metabolism, 40(8), 1735–1736. https://doi.org/10.1177/0271678X20929432

Article  CAS  PubMed  PubMed Central  Google Scholar 

Armulik, A., Abramsson, A., & Betsholtz, C. (2005). Endothelial/pericyte interactions. Circulation Research, 97(6), 512–523. https://doi.org/10.1161/01.RES.0000182903.16652.d7

Article  CAS  PubMed  Google Scholar 

Armulik, A., Genové, G., & Betsholtz, C. (2011). Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Developmental Cell, 21(2), 193–215. https://doi.org/10.1016/j.devcel.2011.07.001

Article  CAS  PubMed  Google Scholar 

Armulik, A., Genové, G., Mäe, M., Nisancioglu, M. H., Wallgard, E., Niaudet, C., He, L., Norlin, J., Lindblom, P., Strittmatter, K., Johansson, B. R., & Betsholtz, C. (2010). Pericytes regulate the blood-brain barrier. Nature, 468(7323), 557–561. https://doi.org/10.1038/nature09522

Article  CAS  PubMed  Google Scholar 

Ayloo, S., Lazo, C. G., Sun, S., Zhang, W., Cui, B., & Gu, C. (2022). Pericyte-to-endothelial cell signaling via vitronectin-integrin regulates blood-CNS barrier. Neuron, 110(10), 1641-1655.e6. https://doi.org/10.1016/j.neuron.2022.02.017

Article  CAS  PubMed  Google Scholar 

Balabanov, R., Beaumont, T., & Dore-Duffy, P. (1999). Role of central nervous system microvascular pericytes in activation of antigen-primed splenic T-lymphocytes. Journal of Neuroscience Research, 55(5), 578–587. https://doi.org/10.1002/(SICI)1097-4547(19990301)55:5%3c578::AID-JNR5%3e3.0.CO;2-E

Article  CAS  PubMed  Google Scholar 

Barón, M., & Gallego, A. (1972). The relation of the microglia with the pericytes in the cat cerebral cortex. Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie, 128(1), 42–57. https://doi.org/10.1007/BF00306887

Article  PubMed  Google Scholar 

Ben-Zvi, A., Lacoste, B., Kur, E., Andreone, B. J., Mayshar, Y., Yan, H., & Gu, C. (2014). Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature, 509(7501), 507–511. https://doi.org/10.1038/nature13324

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bercury, K. K., & Macklin, W. B. (2015). Dynamics and mechanisms of CNS myelination. Developmental Cell, 32(4), 447–458. https://doi.org/10.1016/j.devcel.2015.01.016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bergers, G., & Song, S. (2005). The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology, 7(4), 452–464. https://doi.org/10.1215/S1152851705000232

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birbrair, A., Zhang, T., Wang, Z.-M., Messi, M. L., Enikolopov, G. N., Mintz, A., & Delbono, O. (2013). Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells and Development, 22(16), 2298–2314. https://doi.org/10.1089/scd.2012.0647

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birbrair, A., Zhang, T., Wang, Z.-M., Messi, M. L., Olson, J. D., Mintz, A., & Delbono, O. (2014). Type-2 pericytes participate in normal and tumoral angiogenesis. American Journal of Physiology. Cell Physiology, 307(1), C25-38. https://doi.org/10.1152/ajpcell.00084.2014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bishop, T., & Ratcliffe, P. J. (2015). HIF hydroxylase pathways in cardiovascular physiology and medicine. Circulation Research, 117(1), 65–79. https://doi.org/10.1161/CIRCRESAHA.117.305109

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bohannon, D. G., Long, D., & Kim, W.-K. (2021). Understanding the heterogeneity of human pericyte subsets in blood-brain barrier homeostasis and neurological diseases. Cells, 10(4), 890. https://doi.org/10.3390/cells10040890

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bohannon, D. G., Okhravi, H. R., Kim, J., Kuroda, M. J., Didier, E. S., & Kim, W.-K. (2020). A subtype of cerebrovascular pericytes is associated with blood-brain barrier disruption that develops during normal aging and simian immunodeficiency virus infection. Neurobiology of Aging, 96, 128–136. https://doi.org/10.1016/j.neurobiolaging.2020.08.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Candelario-Jalil, E., Dijkhuizen, R. M., & Magnus, T. (2022). Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke, 53(5), 1473–1486. https://doi.org/10.1161/STROKEAHA.122.036946

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caporali, A., Martello, A., Miscianinov, V., Maselli, D., Vono, R., & Spinetti, G. (2017). Contribution of pericyte paracrine regulation of the endothelium to angiogenesis. Pharmacology & Therapeutics, 171, 56–64. https://doi.org/10.1016/j.pharmthera.2016.10.001

Article  CAS  Google Scholar 

Damisah, E. C., Hill, R. A., Tong, L., Murray, K. N., & Grutzendler, J. (2017). A fluoro-Nissl dye identifies pericytes as distinct vascular mural cells during in vivo brain imaging. Nature Neuroscience, 20(7), 1023–1032. https://doi.org/10.1038/nn.4564

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daneman, R. (2012). The blood-brain barrier in health and disease. Annals of Neurology, 72(5), 648–672. https://doi.org/10.1002/ana.23648

Article  CAS  PubMed  Google Scholar 

Daneman, R., Zhou, L., Kebede, A. A., & Barres, B. A. (2010). Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature, 468(7323), 562–566. https://doi.org/10.1038/nature09513

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dawson, M. R., Levine, J. M., & Reynolds, R. (2000). NG2-expressing cells in the central nervous system: Are they oligodendroglial progenitors? Journal of Neuroscience Research, 61(5), 471–479. https://doi.org/10.1002/1097-4547(20000901)61:5%3c471::AID-JNR1%3e3.0.CO;2-N

Article  CAS  PubMed  Google Scholar 

De La Fuente, A. G., Lange, S., Silva, M. E., Gonzalez, G. A., Tempfer, H., van Wijngaarden, P., Zhao, C., Di Canio, L., Trost, A., Bieler, L., Zaunmair, P., Rotheneichner, P., O’Sullivan, A., Couillard-Despres, S., Errea, O., Mäe, M. A., Andrae, J., He, L., Keller, A., et al. (2017). Pericytes stimulate oligodendrocyte progenitor cell differentiation during CNS remyelination. Cell Reports, 20(8), 1755–1764. https://doi.org/10.1016/j.celrep.2017.08.007

Article  CAS  PubMed  Google Scholar 

Dias, D. O., Kalkitsas, J., Kelahmetoglu, Y., Estrada, C. P., Tatarishvili, J., Holl, D., Jansson, L., Banitalebi, S., Amiry-Moghaddam, M., Ernst, A., Huttner, H. B., Kokaia, Z., Lindvall, O., Brundin, L., Frisén, J., & Göritz, C. (2021). Pericyte-derived fibrotic scarring is conserved across diverse central nervous system lesions. Nature Communications, 12(1), 5501. https://doi.org/10.1038/s41467-021-25585-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dias Moura Prazeres, P. H., Sena, I. F. G., da Borges, I. T., de Azevedo, P. O., Andreotti, J. P., de Paiva, A. E., de Almeida, V. M., de Paula Guerra, D. A., Pinheiro Dos Santos, G. S., Mintz, A., Delbono, O., & Birbrair, A. (2017). Pericytes are heterogeneous in their origin within the same tissue. Developmental Biology, 427(1), 6–11. https://doi.org/10.1016/j.ydbio.2017.05.001

Article  CAS  PubMed  Google Scholar 

Díaz-Flores, L., Gutiérrez, R., Madrid, J. F., Varela, H., Valladares, F., Acosta, E., Martín-Vasallo, P., & Díaz-Flores, L. (2009). Pericytes, Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histology and Histopathology, 24(7), 909–969. https://doi.org/10.14670/HH-24.909

Article  PubMed  Google Scholar 

Ding, R., Hase, Y., Ameen-Ali, K. E., Ndung’u, M., Stevenson, W., Barsby, J., Gourlay, R., Akinyemi, T., Akinyemi, R., Uemura, M. T., Polvikoski, T., Mukaetova-Ladinska, E., Ihara, M., & Kalaria, R. N. (2020). Loss of capillary pericytes and the blood-brain barrier in white matter in poststroke and vascular dementias and Alzheimer’s disease. Brain Pathology, 30(6), 1087–1101. https://doi.org/10.1111/bpa.12888

Article  CAS 

留言 (0)

沒有登入
gif