Amyloids and prions in the light of evolution

Ahmed AB, Znassi N, Château MT, Kajava AV (2015) A structure-based approach to predict predisposition to amyloidosis. Alzheimers Dement 11:681–690. https://doi.org/10.1016/j.jalz.2014.06.007

Article  PubMed  Google Scholar 

Akbey Ü, Andreasen M (2022) Functional amyloids from bacterial biofilms - structural properties and interaction partners. Chem Sci 13:6457–6477. https://doi.org/10.1039/d2sc00645f

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alberti S, Halfmann R, King O, Kapila A, Lindquist S (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137:146–158. https://doi.org/10.1016/j.cell.2009.02.044

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Garawi ZS, Morris KL, Marshall KE, Eichler J, Serpell LC (2017) The diversity and utility of amyloid fibrils formed by short amyloidogenic peptides. Interface Focus 7:20170027. https://doi.org/10.1098/rsfs.2017.0027

Article  PubMed  PubMed Central  Google Scholar 

Ali M, Chernova TA, Newnam GP et al (2014) Stress-dependent proteolytic processing of the actin assembly protein Lsb1 modulates a yeast prion. J Biol Chem 289:27625–27639. https://doi.org/10.1074/jbc.M114.582429

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alteri CJ, Xicohténcatl-Cortes J, Hess S, Caballero-Olín G, Girón JA, Friedman RL (2007) Mycobacterium tuberculosis produces pili during human infection. Proc Natl Acad Sci USA 104:5145–5150. https://doi.org/10.1073/pnas.0602304104

Article  CAS  PubMed  PubMed Central  Google Scholar 

Álvarez-Mena A, Cámara-Almirón J, de Vicente A, Romero D (2020) Multifunctional amyloids in the biology of gram-positive bacteria. Microorganisms 8:2020. https://doi.org/10.3390/microorganisms8122020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Antonets KS, Nizhnikov AA (2017) Predicting amyloidogenic proteins in the proteomes of plants. Int J Mol Sci 18:2155. https://doi.org/10.3390/ijms18102155

Article  CAS  PubMed  PubMed Central  Google Scholar 

Antonets KS, Belousov MV, Sulatskaya AI et al (2020) Accumulation of storage proteins in plant seeds is mediated by amyloid formation. PLoS Biol 18:e3000564. https://doi.org/10.1371/journal.pbio.3000564

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bavdek A, Kostanjšek R, Antonini V et al (2012) pH dependence of listeriolysin O aggregation and pore-forming ability. FEBS J 279:126–141. https://doi.org/10.1111/j.1742-4658.2011.08405.x

Article  CAS  PubMed  Google Scholar 

Bégueret J, Turcq B, Clavé C (1994) Vegetative incompatibility in filamentous fungi: het genes begin to talk. Trends Genet 10:441–446. https://doi.org/10.1016/0168-9525(94)90115-5

Article  PubMed  Google Scholar 

Biasini E, Turnbaugh JA, Unterberger U, Harris DA (2012) Prion protein at the crossroads of physiology and disease. Trends Neurosci 35:92–103. https://doi.org/10.1016/j.tins.2011.10.002

Article  CAS  PubMed  Google Scholar 

Blanco LP, Evans ML, Smith DR, Badtke MP, Chapman MR (2012) Diversity, biogenesis and function of microbial amyloids. Trends Microbiol 20:66–73. https://doi.org/10.1016/j.tim.2011.11.005

Article  CAS  PubMed  Google Scholar 

Borchsenius AS, Wegrzyn RD, Newnam GP, Inge-Vechtomov SG, Chernoff YO (2001) Yeast prion protein derivative defective in aggregate shearing and production of new ‘seeds.’ EMBO J 20:6683–6691. https://doi.org/10.1093/emboj/20.23.6683.AS

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bradley ME, Edskes HK, Hong JY, Wickner RB, Liebman SW (2002) Interactions among prions and prion “strains” in yeast. Proc Natl Acad Sci USA 99(Suppl 4):16392–16399. https://doi.org/10.1073/pnas.152330699

Article  CAS  PubMed  PubMed Central  Google Scholar 

Branda SS, González-Pastor JE, Ben-Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA 98:11621–11626. https://doi.org/10.1073/pnas.191384198

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brunjes DL, Castano A, Clemons A, Rubin J, Maurer MS (2016) Transthyretin cardiac amyloidosis in older Americans. J Card Fail 22:996–1003. https://doi.org/10.1016/j.cardfail.2016.10.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chai L, Romero D, Kayatekin C et al (2013) Isolation, characterization, and aggregation of a structured bacterial matrix precursor. J Biol Chem 288:17559–17568. https://doi.org/10.1074/jbc.M113.453605

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chapman MR, Robinson LS, Pinkner JS et al (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295:851–855. https://doi.org/10.1126/science.1067484

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chernoff YO (2001) Mutation processes at the protein level: is Lamarck back? Mutat Res 488:39–64. https://doi.org/10.1016/s1383-5742(00)00060-0

Article  CAS  PubMed  Google Scholar 

Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268:880–884. https://doi.org/10.1126/science.7754373

Article  CAS  PubMed  Google Scholar 

Chernova TA, Wilkinson KD, Chernoff YO (2017) Prions, chaperones, and proteostasis in yeast. Cold Spring Harb Perspect Biol 9:a023663. https://doi.org/10.1101/cshperspect.a023663

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chu F, Kearns DB, Branda SS, Kolter R, Losick R (2006) Targets of the master regulator of biofilm formation in Bacillus subtilis. Mol Microbiol 59:1216–1228. https://doi.org/10.1111/j.1365-2958.2005.05019.x

Article  CAS  PubMed  Google Scholar 

Collinson SK, Doig PC, Doran JL, Clouthier S, Trust TJ, Kay WW (1993) Thin, aggregative fimbriae mediate binding of Salmonella enteritidis to fibronectin. J Bacteriol 175:12–18. https://doi.org/10.1128/jb.175.1.12-18.1993

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coustou V, Deleu C, Saupe S, Begueret J (1997) The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci USA 94:9773–9778. https://doi.org/10.1073/pnas.94.18.9773

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cox B, Ness F, Tuite M (2003) Analysis of the generation and segregation of propagons: entities that propagate the [PSI+] prion in yeast. Genetics 165:23–33. https://doi.org/10.1093/genetics/165.1.23

Article  CAS  PubMed  PubMed Central  Google Scholar 

Czárán T, Hoekstra RF, Aanen DK (2014) Selection against somatic parasitism can maintain allorecognition in fungi. Fungal Genet Biol 73:128–137. https://doi.org/10.1016/j.fgb.2014.09.010

Article  PubMed  Google Scholar 

Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122. https://doi.org/10.1038/nrd1008

Article  CAS  PubMed  Google Scholar 

Dean DN, Lee JC (2019) pH-Dependent fibril maturation of a Pmel17 repeat domain isoform revealed by tryptophan fluorescence. Biochim Biophys Acta Proteins Proteom 1867:961–969. https://doi.org/10.1016/j.bbapap.2019.01.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dean DN, Lee JC (2020) Modulating functional amyloid formation via alternative splicing of the premelanosomal protein PMEL17. J Biol Chem 295:7544–7553. https://doi.org/10.1074/jbc.RA120.013012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW (1996) Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144:1375–1386. https://doi.org/10.1093/genetics/144.4.1375

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dobzhansky TG (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35:125–129. https://doi.org/10.2307/4444260

Article  Google Scholar 

Dueholm MS, Petersen SV, Sønderkær M et al (2010) Functional amyloid in Pseudomonas. Mol Microbiol 77:1009–1020. https://doi.org/10.1111/j.1365-2958.2010.07269.x

Article  CAS  PubMed  Google Scholar 

Dueholm MS, Albertsen M, Otzen D, Nielsen PH (2012) Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure. PLoS One 7:e51274. https://doi.org/10.1371/journal.pone.0051274

Article  CAS 

留言 (0)

沒有登入
gif