Risk factors for acute kidney injury after high-dose methotrexate therapy: a single-center study and narrative review

Faber S, Diamond LK (1948) Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med 238:787–793. https://doi.org/10.1056/NEJM194806032382301

Article  Google Scholar 

Rajagopalan PTR, Zhang Z, McCourt L, Dwyer M, Benkovic SJ, Hammes GG (2002) Interaction of dihydrofolate reductase with methotrexate: Ensemble and single-molecule kinetics. Proc Natl Acad Sci USA 99:13481–13486. https://doi.org/10.1073/pnas.172501499

Article  CAS  PubMed  PubMed Central  Google Scholar 

Widemann BC, Adamson PC (2006) Understanding and managing methotrexate nephrotoxicity. Oncologist 11:694–703. https://doi.org/10.1634/theoncologist.11-6-694

Article  CAS  PubMed  Google Scholar 

Howard SC, McCormick J, Pui CH, Buddington RK, Harvey RD (2016) Preventing and managing toxicities of high-dose methotrexate. Oncologist 21:1471–1482. https://doi.org/10.1634/theoncologist.2015-0164

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boyce EG, Rogan EL, Lui MC (2023) Upadacitinib for the treatment of rheumatoid arthritis: An extensive review. Ann Pharmacother 57(4):450–462. https://doi.org/10.1177/10600280221113092

Article  CAS  PubMed  Google Scholar 

Strauss SJ, Frezza AM, Abecassis N et al (2021) Bone sarcomas: ESMO-EURACAN-GENTURIS-ERN PaedCan clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol 32:1520–1536. https://doi.org/10.1016/j.annonc.2021.08.1995

Article  CAS  PubMed  Google Scholar 

Holmboe L, Andersen AM, Mørkrid L, Slørdal L, Hall KS (2012) High dose methotrexate chemotherapy: Pharmacokinetics, folate and toxicity in osteosarcoma patients. Br J Clin Pharmacol 73:106–114. https://doi.org/10.1111/j.1365-2125.2011.04054.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng DH, Lu H, Liu TT, Zou XQ, Pang HM (2018) Identification of risk factors in high-dose methotrexate-induced acute kidney injury in childhood acute lymphoblastic leukemia. Chemotherapy 63:101–107. https://doi.org/10.1159/000486823

Hospira. Methotrexate injection, USP. Food and Drug Administration. https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/011719s117lbl.pdf. Accessed 17 Mar 2022

May J, Carson KR, Butler S, Liu W, Bartlett NL, Wagner-Johnston ND (2014) High incidence of methotrexate associated renal toxicity in patients with lymphoma: A retrospective analysis. Leuk Lymphoma 55:1345–1349. https://doi.org/10.3109/10428194.2013.840780

Barreto JN, Peterson KT, Barreto EF et al (2021) Early, empiric high-dose leucovorin rescue in lymphoma patients treated with sequential doses of high-dose methotrexate. Support Care Cancer 29:5293–5301. https://doi.org/10.1007/s00520-021-06106-y

Kawaguchi S, Fujiwara SI, Murahashi R et al (2021) Risk factors for high-dose methotrexate-induced nephrotoxicity. Int J Hematol 114:79–84. https://doi.org/10.1007/s12185-021-03132-8

Yanagimachi M, Goto H, Kaneko T et al (2013) Influence of pre-hydration and pharmacogenetics on plasma methotrexate concentration and renal dysfunction following high-dose methotrexate therapy. Int J Hematol 98:702–707. https://doi.org/10.1007/s12185-013-1464-z

Widemann BC, Balis FM, Kim A et al (2010) Glucarpidase, leucovorin, and thymidine for high-dose methotrexate-induced renal dysfunction: Clinical and pharmacologic factors affecting outcome. J Clin Oncol 28:3979–3986. https://doi.org/10.1200/jco.2009.25.4540

Wiczer T, Dotson E, Tuten A, Phillips G, Maddocks K (2016) Evaluation of incidence and risk factors for high-dose methotrexate-induced nephrotoxicity. J Oncol Pharm Pract 22:430–436. https://doi.org/10.1177/1078155215594417

Huang C, Xia F, Xue L et al (2020) Coadministration of vindesine with high-dose methotrexate therapy increases acute kidney injury via BCRP, MRP2, and OAT1/OAT3. Cancer Chemother Pharmacol 85:433–441. https://doi.org/10.1007/s00280-019-03972-6

Methotrexate. In: In Depth Answers [Interaction Checking]. Greenwood Village (CO): IBM Corporation; 2017 [cited 2022 Sep 22]. Available from: www.micromedexsolutions.com. Subscription required to view

Bleyer WA (1977) Methotrexate: Clinical pharmacology, current status and therapeutic guidelines. Cancer Treat Rev 4:87–101. https://doi.org/10.1016/s0305-7372(77)80007-8

Schwartz GJ, Gauthier B (1985) A simple estimate of glomerular filtration rate in adolescent boys. J Pediatr 106:522–526. https://doi.org/10.1016/s0022-3476(85)80697-1

Inker LA, Eneanya ND, Coresh J et al (2021) New creatinine- and cystatin C-based equations to estimate GFR without race. N Engl J Med 385:1737–1749. https://doi.org/10.1056/NEJMoa2102953

Medrano C, Oberic L, Puisset F et al (2021) Life-threatening complications after high-dose methotrexate and the benefits of glucarpidase as salvage therapy: A cohort study of 468 patients. Leuk Lymphoma 62:846–853. https://doi.org/10.1080/10428194.2020.1846733

Wang Y, Wei L, Guan Y, Wang Q, Xie Q, Hao C (2020) Diabetes is a risk factor for high-dose methotrexate-associated AKI in lymphoma patients. Ren Fail 42:1111–1117. https://doi.org/10.1080/0886022X.2020.1838926

Amitai I, Rozovski U, El-Saleh R et al (2020) Risk factors for high-dose methotrexate associated acute kidney injury in patients with hematological malignancies. Hematol Oncol 38:584–588. https://doi.org/10.1002/hon.2759

Khwaja A (2012) KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 120:c179–184. https://doi.org/10.1159/000339789

Cancer Therapy Evaluation Program (CTEP). Common terminology criteria for adverse events (CTCAE). National Institutes of Health. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm. Accessed 17 Mar 2022

Ackland SP, Schilsky RL (1987) High-dose methotrexate: A critical reappraisal. J Clin Oncol 5:2017–2031. https://doi.org/10.1200/jco.1987.5.12.2017

Sasaki K, Tanaka J, Murakami T, Matuoka H, Fujimoto T, Taguchi H (1985) Reduced citrovorum factor rescue for high-dose methotrexate therapy in childhood malignancies. Cancer Drug Deliv 2:77–86. https://doi.org/10.1089/cdd.1985.2.77

de Miguel D, García-Suárez J, Martín Y, Gil-Fernández JJ, Burgaleta C (2008) Severe acute renal failure following high-dose methotrexate therapy in adults with haematological malignancies: A significant number result from unrecognized co-administration of several drugs. Nephrol Dial Transplant 23:3762–3766. https://doi.org/10.1093/ndt/gfn503

Krämer I, Rosentreter J, Fried M, Kühn M (2021) Significant interaction between high-dose methotrexate and high-dose piperacillin-tazobactam causing reversible neurotoxicity and renal failure in an osteosarcoma patient. J Oncol Pharm Pract 27:1000–1004. https://doi.org/10.1177/1078155220953878

Article  PubMed  Google Scholar 

Yang Y, Wang X, Tian J, Wang Z (2018) Renal function and plasma methotrexate concentrations predict toxicities in adults receiving high-dose methotrexate. Med Sci Monit 24:7719–7726. https://doi.org/10.12659/MSM.912999

Bezabeh S, Mackey AC, Kluetz P, Jappar D, Korvick J (2012) Accumulating evidence for a drug-drug interaction between methotrexate and proton pump inhibitors. Oncologist 17:550–554. https://doi.org/10.1634/theoncologist.2011-0431

Wang X, Song Y, Wang J et al (2020) Effect of proton pump inhibitors on high-dose methotrexate elimination: A systematic review and meta-analysis. Int J Clin Pharm 42:23–30. https://doi.org/10.1007/s11096-019-00958-5

Wu X, Zhang W, Ren H, Chen X, Xie J, Chen N (2014) Diuretics associated acute kidney injury: Clinical and pathological analysis. Ren Fail 36:1051–1055. https://doi.org/10.3109/0886022X.2014.917560

Article  CAS  PubMed  Google Scholar 

de Bruijn PIA, Larsen CK, Frische S et al (2015) Furosemide-induced urinary acidification is caused by pronounced H+ secretion in the thick ascending limb. Am J Physiol Renal Physiol 309:F146-153. https://doi.org/10.1152/ajprenal.00154.2015

Article  CAS  PubMed  Google Scholar 

Zazzeron L, Ottolina D, Scotti E et al (2016) Real-time urinary electrolyte monitoring after furosemide administration in surgical ICU patients with normal renal function. Ann Intensive Care 6:72. https://doi.org/10.1186/s13613-016-0168-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Broe M, Porter G, Bennett W, Deray G (2008) Clinical nephrotoxins: Renal injury from drugs and chemicals, 3rd edn. Springer, New York. https://doi.org/10.1007/978-0-387-84843-3

Book  Google Scholar 

van Eeden R, Rapoport BL (2016) Current trends in the management of anaemia in solid tumours and haematological malignancies. Curr Opin Support Palliat Care 10:189–194. https://doi.org/10.1097/SPC.0000000000000209

Article  PubMed  Google Scholar 

Skibińska L, Ramlau C, Załuski J, Olejniczak B (1990) Methotrexate binding to human plasma proteins. Pol J Pharmacol Pharm 42:151–157

PubMed  Google Scholar 

Kataoka T, Sakurashita H, Kajikawa K, Saeki Y, Taogoshi T, Matsuo H (2021) Low serum albumin level is a risk factor for delayed methotrexate elimination in high-dose methotrexate treatment. Ann Pharmacother 55(10):1195–1202. https://doi.org/10.1177/1060028021992767

Article  CAS  PubMed  Google Scholar 

Nakano T, Kobayashi R, Matsushima S et al (2021) Risk factors for delayed elimination of high-dose methotrexate in childhood acute lymphoblastic leukemia and lymphoma. Int J Hematol 113:744–750. https://doi.org/10.1007/s12185-020-03071-w

Article  CAS  PubMed  Google Scholar 

Taylor ZL, Vang J, Lopez-Lopez E et al (2021) Systematic review of pharmacogenetic factors that influence high-dose methotrexate pharmacokinetics in pediatric malignancies. Cancers (Basel) 13:2837. https://doi.org/10.3390/cancers13112837

Article  CAS  PubMed  Google Scholar 

Ramsey LB, Panetta JC, Smith C et al (2013) Genome-wide study of methotrexate clearance replicates SLCO1B1. Blood 121:898–904. https://doi.org/10.1182/blood-2012-08-452839

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ho RH, Kim RB (2005) Transporters and drug therapy: Implications for drug disposition and disease. Clin Pharmacol Ther 78:260–277. https://doi.org/10.1016/j.clpt.2005.05.011

Article  CAS  PubMed  Google Scholar 

Lopez-Lopez E, Martin-Guerrero I, Ballesteros J et al (2011) Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 57:612–619. https://doi.org/10.1002/pbc.23074

Article  PubMed  Google Scholar 

Li j, Wang X, Zhai X et al (2015) Association of SLCO1B1 gene polymorphisms with toxicity response of high dose methotrexate chemotherapy in childhood acute lymphoblastic leukemia. Int J Clin Exp Med 8:6109–6113

Google Scholar 

Ramsey LB, Balis FM, O’Brien MM et al (2018) Consensus guideline for use of glucarpidase in patients with high-dose methotrexate induced acute kidney injury and delayed methotrexate clearance. Oncologist 23:52–61. https://doi.org/10.1634/theoncologist.2017-0243

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif