Plasma Stability and Plasma Metabolite Concentration–Time Profiles of Oligo(Lactic Acid)8-Paclitaxel Prodrug Loaded Polymeric Micelles

Stage TB, Bergmann TK, Kroetz DL. Clinical pharmacokinetics of paclitaxel monotherapy: an updated literature review. Clin Pharmacokinet. 2018;57:7–19. https://doi.org/10.1007/s40262-017-0563-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weaver BA. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell. 2014;25:2677–81. https://doi.org/10.1091/mbc.E14-04-0916.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nehate C, Jain S, Saneja A, Khare V, Alam N, Dubey RD, Gupta PN. Paclitaxel formulations- challenges and delivery options.pdf. Curr Drug Deliv. 2014;11:666–86. https://doi.org/10.2174/1567201811666140609154949.

Article  CAS  PubMed  Google Scholar 

Croy SR, Kwon GS. Polymeric micelles for drug delivery. Curr Pharm Des. 2006;12:4669–84. https://doi.org/10.2174/138161206779026245.

Article  CAS  PubMed  Google Scholar 

Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev. 2012;64:237–45. https://doi.org/10.1016/j.addr.2012.09.016.

Article  Google Scholar 

Shin DH, Tam YT, Kwon GS. Polymeric micelle nanocarriers in cancer research. Front Chem Sci Eng. 2016;10:348–59. https://doi.org/10.1007/s11705-016-1582-2.

Article  CAS  Google Scholar 

Clogston JD, Hackley VA, Prina-Mello A, Puri S, Sonzini S, Soo PL. Sizing up the next generation of nanomedicines. Pharm Res. 2020;37:1–10.

Article  Google Scholar 

Wang F, Porter M, Konstantopoulos A, Zhang P, Cui H. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J Control Release. 2017;267:100–18. https://doi.org/10.1016/j.jconrel.2017.09.026.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alani AWG, Bae Y, Rao DA, Kwon GS. Polymeric micelles for the pH-dependent controlled, continuous low dose release of paclitaxel. Biomaterials. 2010;31:1765–72. https://doi.org/10.1016/j.biomaterials.2009.11.038.

Article  CAS  PubMed  Google Scholar 

Marios A, Dunne M, Storm G, Allen C. The battle of “ nano ” paclitaxel. Adv Drug Deliv Rev. 2017;122:20–30. https://doi.org/10.1016/j.addr.2017.02.003.

Article  CAS  Google Scholar 

He Z, Wan X, Schulz A, Bludau H, Dobrovolskaia MA, Stern ST, Montgomery SA, Yuan H, Li Z, Alakhova D, Sokolsky M, Darr DB, Perou CM, Jordan R, Luxenhofer R, Kabanov AV. A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity. Biomaterials. 2016;101:296–309. https://doi.org/10.1016/j.biomaterials.2016.06.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rasoulianboroujeni M, Repp L, Lee HJ, Kwon GS. Production of paclitaxel-loaded PEG-b-PLA micelles using PEG for drug loading and freeze-drying. J Control Release. 2022;350:350–9. https://doi.org/10.1016/j.jconrel.2022.08.032.

Article  CAS  PubMed  Google Scholar 

Hwang D, Vinod N, Skoczen SL, Ramsey JD, Snapp KS, Montgomery SA, Wang M, Lim C, Frank JE, Sokolsky-Papkov M, Li Z, Yuan H, Stern ST, Kabanov AV. Bioequivalence assessment of high-capacity polymeric micelle nanoformulation of paclitaxel and Abraxane in rodent and non-human primate models using a stable isotope tracer assay. Biomaterials. 2021;278:121140. https://doi.org/10.1016/j.biomaterials.2021.121140.

Article  CAS  PubMed  Google Scholar 

Cabral H, Miyata K, Osada K, Kataoka K. Block copolymer micelles in nanomedicine applications. Chem Rev. 2018;118:6844–92. https://doi.org/10.1021/acs.chemrev.8b00199.

Article  CAS  PubMed  Google Scholar 

Gadekar V, Borade Y, Kannaujia S, Rajpoot K, Anup N, Tambe V, Kalia K, Tekade RK. Nanomedicines accessible in the market for clinical interventions. J Control Release. 2021;330:372–97. https://doi.org/10.1016/j.jconrel.2020.12.034.

Article  CAS  PubMed  Google Scholar 

Stern ST, Zou P, Skoczen S, Xie S, Liboiron B, Harasym T, Tardi P, Mayer LD, McNeil SE. Prediction of nanoparticle prodrug metabolism by pharmacokinetic modeling of biliary excretion. J Control Release. 2013;172:558–67. https://doi.org/10.1016/j.jconrel.2013.04.025.

Article  CAS  PubMed  Google Scholar 

Tam YT, Gao J, Kwon GS. Oligo(lactic acid)n-paclitaxel prodrugs for poly(ethylene glycol)-block-poly(lactic acid) micelles: loading, release, and backbiting conversion for anticancer activity. J Am Chem Soc. 2016;138:8674–7. https://doi.org/10.1021/jacs.6b03995.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tam YT, Shin DH, Chen KE, Kwon GS. Poly(ethylene glycol)-block-poly(D, L-lactic acid) micelles containing oligo(lactic acid)8-paclitaxel prodrug: in vivo conversion and antitumor efficacy. J Control Release. 2019;298:186–93. https://doi.org/10.1016/j.jconrel.2019.02.017.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tam YT, Repp L, Ma Z-X, Feltenberger JB, Kwon GS. Oligo(lactic acid)8-rapamycin prodrug-loaded poly(ethylene glycol)-block-poly(lactic acid) micelles for injection. Pharm Res. 2019;36:70. https://doi.org/10.1007/s11095-019-2600-0.

Article  CAS  PubMed  Google Scholar 

Repp L, Unterberger CJ, Ye Z, Feltenberger JB, Swanson SM, Marker PC, Kwon GS. Oligo(lactic acid)8-docetaxel prodrug-loaded PEG-b-PLA micelles for prostate cancer. Nanomaterials. 2021;11:2745. https://doi.org/10.3390/nano11102745.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ojha T, Hu Q, Colombo C, Wit J, Van Geijn M, van Steenbergen MJ, Bagheri M, Königs-Werner H, Buhl EM, Bansal R, Shi Y, Hennink WE, Storm G, Rijcken CJF, Lammers T. Lyophilization stabilizes clinical-stage core-crosslinked polymeric micelles to overcome cold chain supply challenges. Biotechnol J. 2021;16:e2000212. https://doi.org/10.1002/biot.202000212.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Jong SJ, Arias ER, Rijkers DTS, Van Nostrum CF, Kettenes-Van Den Bosch JJ, Hennink WE. New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus. Polymer (Guildf). 2001;42:2795–802. https://doi.org/10.1016/S0032-3861(00)00646-7.

Article  Google Scholar 

Liederer BM, Borchardt RT. Enzymes involved in the bioconversion of ester-based prodrugs. J Pharm Sci. 2006;95:1177–95. https://doi.org/10.1002/jps.

Article  CAS  PubMed  Google Scholar 

Kingston DGI. Taxol: the chemistry and structure-activity relationships of a novel anticancer agent. Tibtech. 1994;12:222–7.

Article  CAS  Google Scholar 

Matesanz R, Barasoain I, Yang C-G, Wang L, Li X, de Ines C, Coderch C, Gago F, Barbero JJ, Andreu JM, Fang W-S, Diaz JF. Optimization of taxane binding to microtubules: binding affinity dissection and incremental construction of a high-affinity analog of paclitaxel. Chem Biol. 2008;15:573–85. https://doi.org/10.1016/j.chembiol.2008.05.008.

Article  CAS  PubMed  Google Scholar 

Sparreboom A, van Tellingen O, Nooijen WJ, Beijnen JH. Preclinical pharmacokinetics of paclitaxel and docetaxel, Anticancer. Drugs. 1998;9:1–17. https://doi.org/10.1097/00001813-199801000-00001.

Article  CAS  Google Scholar 

Huizing MT, Vermorken JB, Rosing H, ten BokkelHuinink WW, Mandjes I, Pinedo HM, Beijnen JH. Pharmacokinetics of paclitaxel and three major metabolites in patients with advanced breast carcinoma refractory to anthracycline therapy treated with a 3-hour paclitaxel infusion: A European Cancer Centre (ECC) trial. Ann Oncol. 1995;6:699–704. https://doi.org/10.1093/oxfordjournals.annonc.a059287.

Article  CAS  PubMed  Google Scholar 

Zasadil LM, Andersen KA, Yeum D, Rocque GB, Wilke LG, Tevaarwerk AJ, Raines RT, Burkard ME, Weaver BA. Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles. Sci Transl Med. 2014;6:1–11. https://doi.org/10.1126/scitranslmed.3007965.

Article  CAS  Google Scholar 

Smith RE, Brown AM, Mamounas EP, Anderson SJ, Lembersky BC, Atkins JH, Shibata HR, Baez L, DeFusco PA, Davila E, Tipping SJ, Bearden JD, Thirlwell MP. Randomized trial of a 3-hour versus 24-hour infusion of high-dose paclitaxel in patients with metastatic or locally advanced breast cancer: National Surgical Adjuvant Breast and Bowel Project Protocol B-26. J Clin Oncol. 1999;17:3403–11. https://doi.org/10.1200/JCO.1999.17.11.3403.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif