Preliminary Investigation of a Rapid and Feasible Therapeutic Drug Monitoring Method for the Real-Time Estimation of Blood Pazopanib Concentrations

Touw DJ, Neef C, Thomson AH, Vinks AA. Cost-effectiveness of therapeutic drug monitoring: a systemic review. Ther Drug Monit. 2005;27:10-17. https://doi.org/10.1097/00007691-200502000-00004.

Mancinelli L, Cronin M, Sadée W. Pharmacogenomics: The promise of personalized medicine. AAPS PharmSci. 2000;2:4. https://doi.org/10.1208/ps020104.

Article  Google Scholar 

Bartelink IH, Rademaker CMA, Schobben AFAM, et al. Guidelines on Paediatric Dosing on the Basis of Developmental Physiology and Pharmacokinetic Considerations. Clin Pharmacokinet 45, 1077–1097 (2006). https://doi.org/10.2165/00003088-200645110-00003.

Tange SM, Grey VL, Senecal PE. Therapeutic drug monitoring in pediatrics: a need for improvement. J Clin Pharmacol. 1994; 34:200-214. https://doi.org/10.1002/j.1552-4604.1994.tb03987.x.

de Wit D, van Erp N, den Hartigh J, Wolterbeek R, den Hollander-van Deursen M, Labots M, Guchelaar H-J, Verheul HM, Gelderblom H. Therapeutic Drug Monitoring to Individualize the Dosing of Pazopanib: A Pharmacokinetic Feasibility Study. Ther Drug Monit. 2015;37(3):331–8. https://doi.org/10.1097/FTD.0000000000000141.

Article  CAS  PubMed  Google Scholar 

Westerdijk K, Steeghs N, Tacke CSJ, et al. Therapeutic drug monitoring to personalize dosing of imatinib, sunitinib, and pazopanib: A mixed methods study on barriers and facilitators. Cancer Med. 2023;12:21041–56. https://doi.org/10.1002/cam4.6663.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fukudo M, Tamaki G, Azumi M, Shibata H, Tandai S. Pharmacokinetically guided dosing has the potential to improve real-world outcomes of pazopanib. Br J Clin Pharmacol. 2021;87:2132–9. https://doi.org/10.1111/bcp.14580.

Article  CAS  PubMed  Google Scholar 

Seyfinejad B, Jouyban A. Overview of therapeutic drug monitoring of immunosuppressive drugs: Analytical and clinical practices. J Pharm Biomed Anal. 2021;205:114315. https://doi.org/10.1016/j.jpba.2021.114315.

Vanessa PG, Sahar I, René PZ, et al. Utility, promise, and limitations of liquid chromatography-mass spectrometry-based therapeutic drug monitoring in precision medicine. J Mass Spectrom. 2021;56(11):e4788. https://doi.org/10.1002/jms.4788.

Article  CAS  Google Scholar 

Maruyama S, Kato M, Hiraga T et al. Quantitative determination of plasma cabozantinib concentration using HPLC–UV and its application to patients with renal cell carcinoma. Biomed Chromatogr. 2023;37(5):e5599. https://doi.org/10.1002/bmc.5599.

Strik AS, Wang YMC, Ruff LE, et al. Individualized Dosing of Therapeutic Monoclonal Antibodies—a Changing Treatment Paradigm? AAPS J. 2018;20:99. https://doi.org/10.1208/s12248-018-0257-y.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Zhang R. Recent advances in analytical methods for the therapeutic drug monitoring of immunosuppressive drugs. Drug Test Anal. 2018;10(1):81-94. https://doi.org/10.1002/dta.2290.

Wang F, Zhou M, Wang W et al. Age-associated augmented renal clearance and low BMI trigger suboptimal vancomycin trough concentrations in children with haematologic diseases: data of 1453 paediatric patients from 2017 to 2022. BMC Pediatr. 2023;23: 528. https://doi.org/10.1186/s12887-023-04288-4

Fang Z, Zhang H, Guo J, Guo J. Overview of therapeutic drug monitoring and clinical practice. Talanta. 2024;266(1):2024. https://doi.org/10.1016/j.talanta.2023.124996.

Article  CAS  Google Scholar 

Ates HC, Roberts JA, Lipman J, et al. On-Site Therapeutic Drug Monitoring, Trends Biotechnol, 2020; 38(11):1262-1277. https://doi.org/10.1016/j.tibtech.2020.03.001.

Zhao SS, Bichelberger MA, Colin DY, Robitaille R, Pelletier JN, Masson JF. Monitoring methotrexate in clinical samples from cancer patients during chemotherapy with a LSPR-based competitive sensor. Analyst. 2012;137:4742–50. https://doi.org/10.1039/C2AN35839E.

Article  CAS  PubMed  Google Scholar 

Ferguson BS, Hoggarth DA, Maliniak D, et al. Real-time, aptamer-based tracking of circulating therapeutic agents in living animals. Sci Transl Med. 2013;5:213ra165. https://doi.org/10.1126/scitranslmed.3007095.

Jaworska A, Fornasaro S, Sergo V, et al. Potential of Surface Enhanced Raman Spectroscopy (SERS) in Therapeutic Drug Monitoring (TDM). A Critical Review. Biosensors. 2016;6:47. https://doi.org/10.3390/bios6030047.

Shalannanda W, Satriawan A, Nurrajab MF et al. Biosensors for therapeutic drug monitoring: a review. F1000Research 2023, 12:171. https://doi.org/10.12688/f1000research.130863.1.

Motzer RJ, Hutson TE, Cella D, et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med. 2013 Aug 22;369(8):722-31. https://doi.org/10.1056/NEJMoa1303989.

Lucas CJ, Martin JH. Pharmacokinetic-Guided Dosing of New Oral Cancer Agents. J Clin Pharmacol. 2017;57:S78–98. https://doi.org/10.1002/jcph.937.

Article  CAS  PubMed  Google Scholar 

Noda S, Yoshida T, Hira D, Murai R, Tomita K, Tsuru T, Kageyama S, Kawauchi A, Ikeda Y, Morita S, Terada T. Exploratory Investigation of Target Pazopanib Concentration Range for Patients With Renal Cell Carcinoma. Clin Genitourin Cancer. 2019;17(2):e306–13. https://doi.org/10.1016/j.clgc.2018.12.001.

Article  PubMed  Google Scholar 

Azam C, Claraz P, Chevreau C, et al. Association between clinically relevant toxicities of pazopanib and sunitinib and the use of weak CYP3A4 and P-gp inhibitors. Eur J Clin Pharmacol. 2020;76:579–87. https://doi.org/10.1007/s00228-020-02828-w.

Article  CAS  PubMed  Google Scholar 

Mueller-Schoell A, Groenland SL, Scherf-Clavel O, et al. Therapeutic drug monitoring of oral targeted antineoplastic drugs. Eur J Clin Pharmacol. 2021;77:441–64. https://doi.org/10.1007/s00228-020-03014-8.

Article  PubMed  Google Scholar 

Groenland SL, Katz D, Huitema ADR, et al. Harnessing soft tissue sarcoma with low-dose pazopanib – a matter of blood levels. BMC Cancer. 2018;18:1200. https://doi.org/10.1186/s12885-018-5043-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moon JY, Ajebo EM, Gossage JR, Belcher MD. Improvement of Cutaneous Hereditary Hemorrhagic Telangiectasia With Pazopanib—A Multikinase Inhibitor. JAMA Dermatol. 2022;158(2):214–6. https://doi.org/10.1001/jamadermatol.2021.5132.

Article  PubMed  Google Scholar 

Minot-This M-S, Boudou-Rouquette P, Jouinot A, de Percin S, Balakirouchenane D, Khoudour N, Tlemsani C, Chauvin J, Thomas-Schoemann A, Goldwasser F, et al. Relation between Plasma Trough Concentration of Pazopanib and Progression-Free Survival in Metastatic Soft Tissue Sarcoma Patients. Pharmaceutics. 2022;14(6):1224. https://doi.org/10.3390/pharmaceutics14061224.27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Verheijen RB, Beijnen JH, Schellens JHM, et al. Clinical pharmacokinetics and pharmacodynamics of pazopanib: towards optimized dosing. Clin Pharmacokinet. 2017;56(9):987-997. https://doi.org/10.1007/s40262-017-0510-z.

Wu C, Li B, Meng S, Qie L, Zhang J, Wang G, Ren CC. Prediction for optimal dosage of pazopanib under various clinical situations using physiologically based pharmacokinetic modeling. Front Pharmacol. 2022; 13. https://www.frontiersin.org/articles/10.3389/fphar.2022.963311

Ozbey AC, Combarel D, Poinsignon V, Lovera C, Saada E, Mir O, Paci A. Population Pharmacokinetic Analysis of Pazopanib in Patients and Determination of Target AUC. Pharmaceuticals. 2021;14(9):927. https://doi.org/10.3390/ph14090927.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noda S, Morita S, Terada T. Personalized pharmacotherapy with sunitinib and pazopanib for Asian patients. J Asian Assoc Sch Pharm. 2020;9:1-9. https://www.aaspjournal.org/uploads/155/6947_pdf.pdf

Heath EI, Chiorean EG, Sweeney CJ, et al. A phase I study of the pharmacokinetic and safety profiles of oral pazopanib with a high-fat or low-fat meal in patients with advanced solid tumors. Clin Pharmacol Ther. 2010;88(6):818-23. https://doi.org/10.1038/clpt.2010.199.

Riedmaier AE, DeMent, K, Huckle J, et al. Use of Physiologically Based Pharmacokinetic (PBPK) Modeling for Predicting Drug-Food Interactions: an Industry Perspective. AAPS J. 2020;22:123. https://doi.org/10.1208/s12248-020-00508-2.

Wagner C, Kesisoglou F, Pepin XJH, et al. Use of Physiologically Based Pharmacokinetic Modeling for Predicting Drug–Food Interactions: Recommendations for Improving Predictive Performance of Low Confidence Food Effect Models. AAPS J. 2021;23:85. https://doi.org/10.1208/s12248-021-00601-0.

Emami RA. Predicting Food Effects: Are We There Yet? AAPS J. 2021;24:25. https://doi.org/10.1208/s12248-021-00674-x.

Article  Google Scholar 

Willemsen AECAB, Lubberman FJE, Tol J, Gerritsen WR, van Herpen CML, van Erp NP. Effect of food and acid-reducing agents on the absorption of oral targeted therapies in solid tumors. Drug Discov Today. 2016; 21(6): 962-976. https://doi.org/10.1016/j.drudis.2016.03.002.

Verheijen RB, Bins S, Mathijssen RH, Lolkema MP, van Doorn L, Schellens JH, Beijnen JH, Langenberg MH, Huitema AD, Steeghs N. Dutch Pharmacology Oncology Group. Individualized Pazopanib Dosing: A Prospective Feasibility Study in Cancer Patients. Clin Cancer Res. 2016;22(23):5738-5746. https://doi.org/10.1158/1078-0432.CCR-16-1255.

Verheijen RB, Swart LE, Beijnen JH, Schellens JHM, Huitema ADR, Steeghs N. Exposure-survival analyses of pazopanib in renal cell carcinoma and soft tissue sarcoma patients: opportunities for dose optimization. Cancer Chemother Pharmacol. 2017;80(6):1171-1178. https://doi.org/10.1007/s00280-017-3463-x.

Suttle AB, Ball HA, Molimard M, Hutson TE, Carpenter C, Rajagopalan D, Lin Y, Swann S, Amado R, Pandite L. Relationships between pazopanib exposure and clinical safety and efficacy in patients with advanced renal cell carcinoma. Br J Cancer. 2014;111(10):1909-16. https://doi.org/10.1038/bjc.2014.503. TDM

Verheijen RB, Yu H, Schellens JHM, Beijnen JH, Steeghs N, Huitema ADR. Practical Recommendations for Therapeutic Drug Monitoring of Kinase Inhibitors in Oncology. Clin Pharmacol Ther. 2017;102(5):765-776. https://doi.org/10.1002/cpt.787.

van der Kleij MBA, Guchelaar NAD, Mathijssen RHJ, Versluis J, Huitema ADR, Koolen SLW, Steeghs N. Therapeutic Drug Monitoring of Kinase Inhibitors in Oncology. Clin Pharmacokinet. 2023;62(10):1333-1364. https://doi.org/10.1007/s40262-023-01293-9.

Vanesa EO, Juan J PR, Belén V. Development and validation of an HPLC-UV method for pazopanib quantification in human plasma and application to patients with cancer in routine clinical practice. Ther Drug Monit. 2015;37(2):172-179. https://doi.org/10.1097/FTD.0000000000000121.

Toh YL, Pang YY, Shwe M, et al. HPLC-MS/MS coupled with equilibrium dialysis method for quantification of free drug concentration of pazopanib in plasma. Heliyon. 2020;6(4):e03813. https://doi.org/10.1016/j.heliyon.2020.e03813.

Article  PubMed  PubMed Central  Google Scholar 

Nasr YK, Ibrahim AD, Munif FA, et al. ICH guidelines-compliant HPLC-UV method for pharmaceutical quality control and therapeutic drug monitoring of the multi-targeted tyrosine kinase inhibitor pazopanib. S Afr J Chem. 2017;70:60-66. https://doi.org/10.17159/0379-4350/2017/v70a9.

Rolf WS, Tahani TA, Ahmed EW, Muilwijk MEB, Welzen JHM, Schellens JHB. Liquid chromatography–tandem mass spectrometric assay for therapeutic drug monitoring of the tyrosine kinase inhibitor pazopanib in human plasma. J Chromatogra B. 2012;905:137–40. https://doi.org/10.1016/j.jchromb.2012.08.004.

Article  CAS  Google Scholar 

Yu H, van Erp N, Bins S, et al. Development of a Pharmacokinetic Model to Describe the Complex Pharmacokinetics of Pazopanib in Cancer Patients. Clin Pharmacokinet. 2017;56:293–303. https://doi.org/10.1007/s40262-016-0443-y.

Article  CAS  PubMed  Google Scholar 

US Department of Health and Human Services. Food and Drug Administration Center for Drug Evaluation and Research (CDER). Guidance for industry: bioanalytical method validation. Available at: https://www.fda.gov/media/70858/download. Accessed March 7, 2024.

International council for harmonization of technical requirements for pharmaceuticals for human use. ICH harmonized guideline. Bioanalytical method validation and study sample analysis M10. Available at: https://www.pmda.go.jp/files/000246792.pdf. Accessed March 7, 2024.

Westerdijk K, Desar IME, Steeghs N, van der Graaf WTA, van Erp NP, on behalf of the Dutch Pharmacology and Oncology Group (DPOG). Imatinib, sunitinib and pazopanib: From flat-fixed dosing towards a pharmacokinetically guided personalized dose. Br J Clin Pharmacol. 2020;86:258–273. https://doi.org/10.1111/bcp.14185.

Shiraiwa K, Suzuki Y, Tanaka K, Kawano M, Iwasaki T, Matsumoto A, Tanaka R, Tatsuta R, Tsumura H, Itoh H. Development of a High-Throughput Quantification Method for Pazopanib Using Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry and Its Clinical Application in Patients with Soft Tissue Tumors. Ther Drug Monit. 2021;43(3):416–21. https://doi.org/10.1097/FTD.0000000000000821.

Article  CAS  PubMed  Google Scholar 

Alia F, Ashley MH, Michael JS, Andrew R. Evaluating the utility of therapeutic drug monitoring in the clinical use of small molecule kinase inhibitors: a review of the literature. Expert Opin Drug Metab Toxicol. 2021;17(7):803–21. https://doi.org/10.1080/17425255.2021.1943357.

Article  CAS  Google Scholar 

Groenland SL, van Eerden RAG, Westerdijk K, Meertens M, Koolen SLW, Moes DJAR, de Vries N, Rosing H, Otten H, Vulink AJE, IDesar.ME, Imholz ALT, Gelderblom H, van Erp NP, Beijnen JH, Mathijssen RHJ, Huitema ADR, Steeghs N.Therapeutic drug monitoring-based precision dosing of oral targeted therapies in oncology: a prospective multicenter study. Ann Oncol. 2022; 33(10): 1071–1082. https://doi.org/10.1016/j.annonc.2022.06.010.

JMDC Claims Database. JMDC Inc, Tokyo, Japan. https://www.jmdc.co.jp/en/. Accessed 3 Jan 2024.

Verweij J, Sleijfer S. Pazopanib, a new therapy for metastatic soft tissue sarcoma. Expert Opin Pharmacother. 2013;14(7):929–35. https://doi.org/10.1517/14656566.2013.780030.

Article  CAS  PubMed  Google Scholar 

Drug Database. Pharmaceutical and Medical Devices Agency in Japan, Tokyo, Japan. https://www.info.pmda.go.jp/go/interview/2/300242_4291028F1023_2_VTR_1F.pdf. Accessed 3 Jan 2024.

Salvagno GL, Danese E, Lippi G. Preanalytical variables for liquid chromatography-mass spectrometry (LC-MS) analysis of human blood specimen. Clin Biochem. 2017;50(10–11):582–6. https://doi.org/10.1016/j.clinbiochem.2017.04.012.

Article 

留言 (0)

沒有登入
gif