Calcium oxalate crystal-induced secretome derived from proximal tubular cells, not that from distal tubular cells, induces renal fibroblast activation

Uribarri J. Chronic kidney disease and kidney stones. Curr Opin Nephrol Hypertens. 2020;29(2):237–42. https://doi.org/10.1097/MNH.0000000000000582.

Article  PubMed  Google Scholar 

Shang W, Li L, Ren Y, Ge Q, Ku M, Ge S, et al. History of kidney stones and risk of chronic kidney disease: a meta-analysis. PeerJ. 2017;5:e2907. https://doi.org/10.7717/peerj.2907.

Article  PubMed  PubMed Central  Google Scholar 

Chuang TF, Hung HC, Li SF, Lee MW, Pai JY, Hung CT. Risk of chronic kidney disease in patients with kidney stones-a nationwide cohort study. BMC Nephrol. 2020;21(1):292. https://doi.org/10.1186/s12882-020-01950-2.

Article  PubMed  PubMed Central  Google Scholar 

Waikar SS, Srivastava A, Palsson R, Shafi T, Hsu CY, Sharma K, et al. Association of urinary oxalate excretion with the risk of chronic kidney disease progression. JAMA Intern Med. 2019;179(4):542–51. https://doi.org/10.1001/jamainternmed.2018.7980.

Article  PubMed  PubMed Central  Google Scholar 

Kanlaya R, Khamchun S, Kapincharanon C, Thongboonkerd V. Protective effect of epigallocatechin-3-gallate (EGCG) via Nrf2 pathway against oxalate-induced epithelial mesenchymal transition (EMT) of renal tubular cells. Sci Rep. 2016;6:30233. https://doi.org/10.1038/srep30233.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peerapen P, Chaiyarit S, Thongboonkerd V. Protein network analysis and functional studies of calcium oxalate crystal-induced cytotoxicity in renal tubular epithelial cells. Proteomics. 2018;18(8):e1800008. https://doi.org/10.1002/pmic.201800008.

Article  CAS  PubMed  Google Scholar 

Peerapen P, Thongboonkerd V. Protective roles of trigonelline against oxalate-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells: An in vitro study. Food Chem Toxicol. 2020;135:110915. https://doi.org/10.1016/j.fct.2019.110915.

Article  CAS  PubMed  Google Scholar 

Ding T, Zhao T, Li Y, Liu Z, Ding J, Ji B, et al. Vitexin exerts protective effects against calcium oxalate crystal-induced kidney pyroptosis in vivo and in vitro. Phytomedicine. 2021;86:153562. https://doi.org/10.1016/j.phymed.2021.153562.

Article  CAS  PubMed  Google Scholar 

Kanlaya R, Subkod C, Nanthawuttiphan S, Thongboonkerd V. Caffeine prevents oxalate-induced epithelial-mesenchymal transition of renal tubular cells by its anti-oxidative property through activation of Nrf2 signaling and suppression of Snail1 transcription factor. Biomed Pharmacother. 2021;141:111870. https://doi.org/10.1016/j.biopha.2021.111870.

Article  CAS  PubMed  Google Scholar 

Gong W, Luo C, Peng F, Xiao J, Zeng Y, Yin B, et al. Brahma-related gene-1 promotes tubular senescence and renal fibrosis through Wnt/beta-catenin/autophagy axis. Clin Sci. 2021;135(15):1873–95. https://doi.org/10.1042/CS20210447.

Article  CAS  Google Scholar 

Zhang F, Zhou X, Zou H, Liu L, Li X, Ruan Y, et al. SAA1 is transcriptionally activated by STAT3 and accelerates renal interstitial fibrosis by inducing endoplasmic reticulum stress. Exp Cell Res. 2021;408(1):112856. https://doi.org/10.1016/j.yexcr.2021.112856.

Article  CAS  PubMed  Google Scholar 

Romagnani P, Remuzzi G, Glassock R, Levin A, Jager KJ, Tonelli M, et al. Chronic kidney disease. Nat Rev Dis Primers. 2017;3:17088. https://doi.org/10.1038/nrdp.2017.88.

Article  PubMed  Google Scholar 

Yuan Q, Tan RJ, Liu Y. Myofibroblast in kidney fibrosis: origin, activation, and regulation. Adv Exp Med Biol. 2019;1165:253–83. https://doi.org/10.1007/978-981-13-8871-2_12.

Article  CAS  PubMed  Google Scholar 

LeBleu VS, Taduri G, O’Connell J, Teng Y, Cooke VG, Woda C, et al. Origin and function of myofibroblasts in kidney fibrosis. Nat Med. 2013;19(8):1047–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prochaska M, Taylor E, Ferraro PM, Curhan G. Relative supersaturation of 24-hour urine and likelihood of kidney stones. J Urol. 2018;199(5):1262–6. https://doi.org/10.1016/j.juro.2017.10.046.

Article  PubMed  Google Scholar 

Chirackal RS, Jayachandran M, Wang X, Edeh S, Haskic Z, Perinpam M, et al. Urinary extracellular vesicle-associated MCP-1 and NGAL derived from specific nephron segments differ between calcium oxalate stone formers and controls. Am J Physiol Renal Physiol. 2019;317(6):F1475–82. https://doi.org/10.1152/ajprenal.00515.2018.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang S, Li L, Chen D, Liang D, Xu F, Cheng Z, et al. Secondary oxalate nephropathy: causes and clinicopathological characteristics of a case series. Nephron. 2021;145(6):684–91. https://doi.org/10.1159/000517072.

Article  CAS  PubMed  Google Scholar 

Kanlaya R, Fong-ngern K, Thongboonkerd V. Cellular adaptive response of distal renal tubular cells to high-oxalate environment highlights surface alpha-enolase as the enhancer of calcium oxalate monohydrate crystal adhesion. J Proteomics. 2013;80:55–65. https://doi.org/10.1016/j.jprot.2013.01.001.

Article  CAS  PubMed  Google Scholar 

Chutipongtanate S, Fong-ngern K, Peerapen P, Thongboonkerd V. High calcium enhances calcium oxalate crystal binding capacity of renal tubular cells via increased surface annexin A1 but impairs their proliferation and healing. J Proteome Res. 2012;11(7):3650–63. https://doi.org/10.1021/pr3000738.

Article  CAS  PubMed  Google Scholar 

Wang Z, Li MX, Xu CZ, Zhang Y, Deng Q, Sun R, et al. Comprehensive study of altered proteomic landscape in proximal renal tubular epithelial cells in response to calcium oxalate monohydrate crystals. BMC Urol. 2020;20(1):136. https://doi.org/10.1186/s12894-020-00709-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Semangoen T, Sinchaikul S, Chen ST, Thongboonkerd V. Altered proteins in MDCK renal tubular cells in response to calcium oxalate dihydrate crystal adhesion: a proteomics approach. J Proteome Res. 2008;7(7):2889–96. https://doi.org/10.1021/pr800113k.

Article  CAS  PubMed  Google Scholar 

Semangoen T, Sinchaikul S, Chen ST, Thongboonkerd V. Proteomic analysis of altered proteins in distal renal tubular cells in response to calcium oxalate monohydrate crystal adhesion: Implications for kidney stone disease. Proteomics Clin Appl. 2008;2(7–8):1099–109. https://doi.org/10.1002/prca.200780136.

Article  CAS  PubMed  Google Scholar 

Thongboonkerd V, Semangoen T, Sinchaikul S, Chen ST. Proteomic analysis of calcium oxalate monohydrate crystal-induced cytotoxicity in distal renal tubular cells. J Proteome Res. 2008;7(11):4689–700. https://doi.org/10.1021/pr8002408.

Article  CAS  PubMed  Google Scholar 

Thongboonkerd V. Proteomics of crystal-cell interactions: A model for kidney stone research. Cells. 2019;8(9):1076. https://doi.org/10.3390/cells8091076.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chiangjong W, Thongboonkerd V. Calcium oxalate crystals increased enolase-1 secretion from renal tubular cells that subsequently enhanced crystal and monocyte invasion through renal interstitium. Sci Rep. 2016;6:24064. https://doi.org/10.1038/srep24064.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thongboonkerd V, Semangoen T, Chutipongtanate S. Factors determining types and morphologies of calcium oxalate crystals: Molar concentrations, buffering, pH, stirring and temperature. Clin Chim Acta. 2006;367(1–2):120–31. https://doi.org/10.1016/j.cca.2005.11.033.

Article  CAS  PubMed  Google Scholar 

Thongboonkerd V, Chutipongtanate S, Semangoen T, Malasit P. Urinary trefoil factor 1 is a novel potent inhibitor of calcium oxalate crystal growth and aggregation. J Urol. 2008;179(4):1615–9. https://doi.org/10.1016/j.juro.2007.11.041.

Article  CAS  PubMed  Google Scholar 

Somsuan K, Peerapen P, Boonmark W, Plumworasawat S, Samol R, Sakulsak N, et al. ARID1A knockdown triggers epithelial-mesenchymal transition and carcinogenesis features of renal cells: role in renal cell carcinoma. FASEB J. 2019;33(11):12226–39. https://doi.org/10.1096/fj.201802720RR.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaiyarit S, Thongboonkerd V. Changes in mitochondrial proteome of renal tubular cells induced by calcium oxalate monohydrate crystal adhesion and internalization are related to mitochondrial dysfunction. J Proteome Res. 2012;11(6):3269–80. https://doi.org/10.1021/pr300018c.

Article  CAS  PubMed  Google Scholar 

Yoodee S, Noonin C, Sueksakit K, Kanlaya R, Chaiyarit S, Peerapen P, et al. Effects of secretome derived from macrophages exposed to calcium oxalate crystals on renal fibroblast activation. Commun Biol. 2021;4(1):959. https://doi.org/10.1038/s42003-021-02479-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanlaya R, Peerapen P, Nilnumkhum A, Plumworasawat S, Sueksakit K, Thongboonkerd V. Epigallocatechin-3-gallate prevents TGF-beta1-induced epithelial-mesenchymal transition and fibrotic changes of renal cells via GSK-3beta/beta-catenin/Snail1 and Nrf2 pathways. J Nutr Biochem. 2020;76:108266. https://doi.org/10.1016/j.jnutbio.2019.108266.

Article  CAS  PubMed  Google Scholar 

Thanomkitti K, Fong-ngern K, Sueksakit K, Thuangtong R, Thongboonkerd V. Molecular functional analyses revealed essential roles of HSP90 and lamin A/C in growth, migration, and self-aggregation of dermal papilla cells. Cell Death Discov. 2018;4:53. https://doi.org/10.1038/s41420-018-0053-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gallemit PEM, Yoodee S, Malaitad T, Thongboonkerd V. Epigallocatechin-3-gallate plays more predominant roles than caffeine for inducing actin-crosslinking, ubiquitin/proteasome activity and glycolysis, and suppressing angiogenesis features of human endothelial cells. Biomed Pharmacother. 2021;141:111837. https://doi.org/10.1016/j.biopha.2021.111837.

Article  CAS 

留言 (0)

沒有登入
gif