Artesunate targets cellular metabolism to regulate the Th17/Treg cell balance

Faas M, Ipseiz N, Ackermann J, Culemann S, Grüneboom A, Schröder F, et al. IL-33-induced metabolic reprogramming controls the differentiation of alternatively activated macrophages and the resolution of inflammation. Immunity. 2021;54:2531-2546.e5.

Article  CAS  PubMed  Google Scholar 

Wang H, Yang Y, Liu J, Qian L. Direct cell reprogramming: approaches, mechanisms and progress. Nat Rev Mol Cell Biol. 2021;22:410–24.

Article  PubMed  PubMed Central  Google Scholar 

Zhang Y, Li F, Chen C, Li Y, Xie W, Huang D, et al. RAGE-mediated T cell metabolic reprogramming shapes T cell inflammatory response after stroke. J Cereb Blood Flow Metab. 2022;42:952–65.

Article  CAS  PubMed  Google Scholar 

Deng J, Lu C, Zhao Q, Chen K, Ma S, Li Z. The Th17/Treg cell balance: crosstalk among the immune system, bone and microbes in periodontitis. J Periodontal Res. 2022;57:246–55.

Article  CAS  PubMed  Google Scholar 

Yuan M, Qian X, Huang Y, Ma X, Duan F, Yang Y, et al. Th17 Activation and Th17/Treg imbalance in prolonged anterior intraocular inflammation after ocular alkali burn. Int J Mol Sci. 2022;23:7075.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang C, Zhou W, Su G, Hu J, Yang P. Progranulin suppressed autoimmune uveitis and autoimmune neuroinflammation by inhibiting Th1/Th17 cells and promoting Treg cells and M2 macrophages. Neurol Neuroimmunol Neuroinflamm. 2022;9: e1133.

Article  PubMed  PubMed Central  Google Scholar 

Muik A, Adams HC, Gieseke F, Altintas I, Schoedel KB, Blum JM, et al. DuoBody-CD40x4-1BB induces dendritic-cell maturation and enhances T-cell activation through conditional CD40 and 4–1BB agonist activity. J Immunother Cancer. 2022;10: e004322.

Article  PubMed  PubMed Central  Google Scholar 

Shenoy AT, De Lyon AC, Arafa EI, Salwig I, Barker KA, Korkmaz FT, et al. Antigen presentation by lung epithelial cells directs CD4+ TRM cell function and regulates barrier immunity. Nat Commun. 2021;12:5834.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balyan R, Gautam N, Gascoigne NRJ. The ups and downs of metabolism during the lifespan of a T cell. Int J Mol Sci. 2020;21:7972.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Almeida L, Dhillon-LaBrooy A, Carriche G, Berod L, Sparwasser T. CD4+ T-cell differentiation and function: unifying glycolysis, fatty acid oxidation, polyamines NAD mitochondria. J Allergy Clin Immunol. 2021;148:16–32.

Article  CAS  PubMed  Google Scholar 

Miao Y, Zhang C, Yang L, Zeng X, Hu Y, Xue X, et al. The activation of PPARγ enhances Treg responses through up-regulating CD36/CPT1-mediated fatty acid oxidation and subsequent N-glycan branching of TβRII/IL-2Rα. Cell Commun Signal. 2022;20:48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai F, Jin S, Chen G. The effect of lipid metabolism on CD4+ T cells. Mediators Inflamm. 2021;2021:1–8.

Article  Google Scholar 

Raud B, Roy DG, Divakaruni AS, Tarasenko TN, Franke R, Ma EH, et al. Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation. Cell Metab. 2018;28:504-515.e7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu S, Liu Z, Shan Z, Liu Y, Chen T, Fang L, et al. Skewed Th17/Treg balance during progression and malignant transformation of oral submucous fibrosis. Oral Dis. 2022;28:2119–30.

Article  PubMed  Google Scholar 

Ma Y, Liu C, Xi G, Guan Y, Tang Y, Zhang J, et al. Bioinformatic analysis and cellular assays identify substance P influencing Th17/Treg differentiation via the MyD88 pathway as a potential contributor to the progression of asthma and allergic rhinitis. Dis Markers. 2022;2022:1–11.

Google Scholar 

Huang F, Wong P, Li J, Lv Z, Xu L, Zhu G, et al. Osteoimmunology: The correlation between osteoclasts and the Th17/Treg balance in osteoporosis. J Cell Mol Med. 2022;26:3591–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang S, Gang X, Yang S, Cui M, Sun L, Li Z, et al. The alterations in and the role of the Th17/Treg balance in metabolic diseases. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.678355.

Article  PubMed  PubMed Central  Google Scholar 

Ma N, Zhang Z, Liao F, Jiang T, Tu Y. The birth of artemisinin. Pharmacol Ther. 2020;216: 107658.

Article  CAS  PubMed  Google Scholar 

Feng X, Cao S, Qiu F, Zhang B. Traditional application and modern pharmacological research of Artemisia annua L. Pharmacol Ther. 2020;216: 107650.

Article  CAS  PubMed  Google Scholar 

Tu Y. Artemisinin-A gift from traditional Chinese medicine to the world (nobel lecture). Angew Chem Int Ed. 2016;55:10210–26.

Article  CAS  Google Scholar 

Efferth T. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol. 2017;46:65–83.

Article  CAS  PubMed  Google Scholar 

Efferth T, Oesch F. The immunosuppressive activity of artemisinin-type drugs towards inflammatory and autoimmune diseases. Med Res Rev. 2021;41:3023–61.

Article  CAS  PubMed  Google Scholar 

Cheong DHJ, Tan DWS, Wong FWS, Tran T. Anti-malarial drug, artemisinin and its derivatives for the treatment of respiratory diseases. Pharmacol Res. 2020;158: 104901.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai X-Y, Liu P, Chai Y-W, Wang Y, Ren S-H, Li Y-Y, et al. Artesunate attenuates 2, 4-dinitrochlorobenzene-induced atopic dermatitis by down-regulating Th17 cell responses in BALB/c mice. Eur J Pharmacol. 2020;874: 173020.

Article  CAS  PubMed  Google Scholar 

Liu J, Hong X, Lin D, Luo X, Zhu M, Mo H. Artesunate influences Th17/Treg lymphocyte balance by modulating Treg apoptosis and Th17 proliferation in a murine model of rheumatoid arthritis. Exp Ther Med. 2017;13:2267–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao F, Rui K, Han M, Zou L, Huang E, Tian J, et al. Artesunate suppresses Th17 response via inhibiting IRF4-mediated glycolysis and ameliorates Sjog̈ren’s syndrome. Signal Transduct Target Ther. 2022;7:274.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2010;28:445–89.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruterbusch M, Pruner KB, Shehata L, Pepper M. In vivo CD4 + T cell differentiation and function: revisiting the Th1/Th2 paradigm. Annu Rev Immunol. 2020;38:705–25.

Article  CAS  PubMed  Google Scholar 

Maggi L, Santarlasci V, Capone M, Peired A, Frosali F, Crome SQ, et al. CD161 is a marker of all human IL-17-producing T-cell subsets and is induced by RORC. Eur J Immunol. 2010;40:2174–81.

Article  CAS  PubMed  Google Scholar 

Crome SQ, Wang AY, Kang CY, Levings MK. The role of retinoic acid‐related orphan receptor variant 2 and IL‐17 in the development and function of human CD4 &plus. T cells Eur J Immunol. 2009;39:1480–93.

Article  CAS  PubMed  Google Scholar 

Mazzoni A, Santarlasci V, Maggi L, Capone M, Rossi MC, Querci V, et al. Demethylation of the RORC2 and IL17A in human CD4+ T lymphocytes defines Th17 origin of nonclassic Th1 cells. J Immunol. 2015;194:3116–26.

Article  CAS  PubMed  Google Scholar 

Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6:1123–32.

Article  CAS  PubMed  Google Scholar 

Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517.

Article  CAS  PubMed  Google Scholar 

Loos J, Schmaul S, Noll TM, Paterka M, Schillner M, Löffel JT, et al. Functional characteristics of Th1, Th17, and ex-Th17 cells in EAE revealed by intravital two-photon microscopy. J Neuroinflammation. 2020;17:357.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Millier MJ, Fanning NC, Frampton C, Stamp LK, Hessian PA. Plasma interleukin-23 and circulating IL-17A+IFNγ+ ex-Th17 cells predict opposing outcomes of anti-TNF therapy in rheumatoid arthritis. Arthritis Res Ther. 2022;24:57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif