A common platform technology for green synthesis of multiple nanoparticles and their applicability in crop growth

Dhand, C., Dwivedi, N., Loh, X.J., Ying, A.N.J., Verma, N.K., Beuerman, R.W., Lakshminarayanan, R., Ramakrishna, S.: Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv. 5, 105003–105037 (2015). https://doi.org/10.1039/C5RA19388E

Article  CAS  Google Scholar 

Iravani, S., Korbekandi, H., Mirmohammadi, S.V., Zolfaghari, B.: Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci. 9, 385–406 (2014)

CAS  Google Scholar 

Marslin, G., Siram, K., Maqbool, Q., Selvakesavan, R.K., Kruszka, D., Kachlicki, P., Franklin, G.: Secondary metabolites in the green synthesis of metallic nanoparticles. Materials 11, 940 (2018). https://doi.org/10.3390/ma11060940

Article  CAS  Google Scholar 

Singh, P., Kim, Y.-J., Zhang, D., Yang, D.-C.: Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34, 588–599 (2016). https://doi.org/10.1016/j.tibtech.2016.02.006

Article  CAS  Google Scholar 

Mittal, A.K., Chisti, Y., Banerjee, U.C.: Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31, 346–356 (2013). https://doi.org/10.1016/j.biotechadv.2013.01.003

Article  CAS  Google Scholar 

Khandel, P., Yadaw, R.K., Soni, D.K., Kanwar, L., Shahi, S.K.: Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J. Nanostruct. Chem. 8, 217–254 (2018). https://doi.org/10.1007/s40097-018-0267-4

Article  CAS  Google Scholar 

Adisa, I.O., Pullagurala, V.L.R., Peralta-Videa, J.R., Dimkpa, C.O., Elmer, W.H., Gardea-Torresdey, J.L., White, J.C.: Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ. Sci. Nano 6, 2002–2030 (2019)

Article  CAS  Google Scholar 

Batsmanova LM, Gonchar LM, Taran NY, Okanenko AA.: Using a colloidal solution of metal nanoparticles as micronutrient fertilizer for cereals. In: Proceedings of the International Conference on Nanomaterials: Applications and Properties vol.2, 16–21 September, Odesa, Ukraine (2013)

Raliya, R., Nair, R., Chavalmane, S., Wang, W.-N., Biswas, P.: Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7, 1584–1594 (2015). https://doi.org/10.1039/C5MT00168D

Article  CAS  Google Scholar 

Shahwan, T., Sirriah, S.A., Nairat, M., Boyac, E., Eroğlu, A.E., Scott, T.B., Hallam, K.R.: Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J. 172, 58–266 (2011). https://doi.org/10.1016/j.cej.2011.05.103

Article  CAS  Google Scholar 

Hudlikar, M., Joglekar, S., Dhaygude, M., Kodam, K.: Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach. J. Nanopart. Res. 14, 865 (2012). https://doi.org/10.1007/s11051-012-0865-x

Article  CAS  Google Scholar 

Kumar, M.A.P., Suresh, D., Nagabhushana, H., Sharma, S.C.: Beta vulgaris aided green synthesis of ZnO nanoparticles and their luminescence, photocatalytic and antioxidant properties. Eur. Phys. J. Plus 130, 109 (2015). https://doi.org/10.1140/epjp/i2015-15109-2

Article  CAS  Google Scholar 

Iliger, K.S., Sofi, T.A., Bhat, N.A., Ahanger, F.A., Sekhar, J.C., Elhendi, A.Z., Al-Huqail, A.A., Khan, F.: Copper nanoparticles: green synthesis and managing fruit rot disease of chilli caused by Colletotrichum capsici. Saudi J. Biol. Sci. 28, 1477–1486 (2021). https://doi.org/10.1016/j.sjbs.2020.12.003

Article  CAS  Google Scholar 

Umavathi, S., Mahboob, S., Govindarajan, M., Al-Ghanim, K.A., Ahmed, Z., Virik, P., Al-Mulhm, N., Subash, M., Gopinath, K., Kavitha, C.: Green synthesis of ZnO nanoparticles for antimicrobial and vegetative growth applications: a novel approach for advancing efficient high quality health care to human wellbeing. Saudi J. Biol. Sci. 28, 1808–1815 (2021). https://doi.org/10.1016/j.sjbs.2020.12.025

Article  CAS  Google Scholar 

Devatha, C.P., Thalla, A.K., Katte, S.Y.: Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. J Clean Prod. 139, 1425–1435 (2016). https://doi.org/10.1016/j.jclepro.2016.09.019

Article  CAS  Google Scholar 

Długosz, O., Szostak, K., Krupiński, M., Banach, M.: Synthesis of Fe3O4/ZnO nanoparticles and their application for the photodegradation of anionic and cationic dyes. Int. J. Environ. Sci. Technol. 18, 561–574 (2020). https://doi.org/10.1007/s13762-020-02852-4

Article  CAS  Google Scholar 

Makkar, H.P.S., Blümmel, M., Borowy, N.K., Becker, K.: Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J. Sci. Food Agric. 61, 161–165 (1993). https://doi.org/10.1002/jsfa.2740610205

Article  CAS  Google Scholar 

Raliya, R., Tarafdar, J.C.: ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric. Res. 2, 48–57 (2013). https://doi.org/10.1007/s40003-012-0049-z

Article  CAS  Google Scholar 

Tabatabai, M.A.: Soil enzymes. In: Page, A.L., Miller, R.H., Keeney, D.R. (eds.) Methods of Soil Analysis Part 2, p. 1159. American Society of Agronomy and Soil Science Society of America, Madison (1982)

Google Scholar 

Marslin, G., Selvakesavan, R.K., Franklin, G., Sarmento, B., Dias, A.C.: Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera. Int. J. Nanomed. 10, 5955–5963 (2015). https://doi.org/10.2147/IJN.S81271

Article  CAS  Google Scholar 

Calle, L.C., López, M.E.L.: Green synthesis of silver nanoparticles using green coffee bean extract. In: Torres, I., Bustamante, J., Sierra, D. (eds.) VII Latin American Congress on Biomedical Engineering CLAIB (IFMBE Proceedings), vol. 60. Springer, Bucaramanga, Santander, Colombia, Singapore (2017). https://doi.org/10.1007/978-981-10-4086-3_55

Chapter  Google Scholar 

Nitthikan, N., Leelapornpisid, P., Natakankitkul, S., Chaiyana, W., Mueller, M., Viernstein, H., Kiattisin, K.: Improvement of stability and transdermal delivery of bioactive compounds in green robusta coffee beans extract loaded nanostructured lipid carriers. J. Nanotechnol. (2018). https://doi.org/10.1155/2018/7865024

Article  Google Scholar 

Li, H., Cao, Y.: For the love of nature: people who prefer natural versus synthetic drugs are higher in nature connectedness. J. Environ. Psychol. 71, 101496 (2020). https://doi.org/10.1016/j.jenvp.2020.101496

Article  Google Scholar 

Pérez-Jiménez, J., Neveu, V., Vos, F., Scalbert, A.: Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 64, S112–S120 (2010). https://doi.org/10.1038/ejcn.2010.221

Article  CAS  Google Scholar 

Kasana, R.C., Panwar, N.R., Burman, U., Kumar, P.: Prosopis cineraria leaf extract mediated green biosynthesis of copper oxide nanoparticles. Inorg. Nano-Met. Chem. Published online (2022). https://doi.org/10.1080/24701556.2021.2025073

Article  Google Scholar 

Desalegn, B., Megharaj, M., Chen, Z., Naidu, R.: Green synthesis of zero valent iron nanoparticle using mango peel extract and surface characterization using XPS and GC-MS. Heliyon 5, e01750 (2019). https://doi.org/10.1016/j.heliyon.2019.e01750

Article  Google Scholar 

Bollella, P., Hibino, Y., Conejo-Valverde, P., Soto-Cruz, J., Bergueiro, J., Calderón, M., Rojas-Carrillo, O., Kano, K., Gorton, L.: The influence of the shape of Au nanoparticles on the catalytic current of fructose dehydrogenase. Anal. Bioanal. Chem. 411, 7645–7657 (2019). https://doi.org/10.1007/s00216-019-01944-6

Article  CAS  Google Scholar 

Kumar, P., Burman, U., Santra, P.: Effect of nano-zinc oxide on nitrogenase activity in legumes: an interplay of concentration and exposure time. Int. Nano Lett. 5, 191–198 (2015). https://doi.org/10.1007/s40089-015-0155-6

Article  CAS  Google Scholar 

Cormode, D.P., Gao, L., Koo, H.: Emerging biomedical applications of enzyme-like catalytic nanomaterials. Trends Biotechnol. 36, 15–29 (2018). https://doi.org/10.1016/j.tibtech.2017.09.006

Article  CAS  Google Scholar 

Rui, M., Ma, C., Hao, Y., Guo, J., Rui, Y., Tang, X., Zhao, Q., Fan, X., Zhang, Z., Hou, T., Zhu, S.: Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front. Plant Sci. 7, 815 (2016). https://doi.org/10.3389/fpls.2016.00815

Article  Google Scholar 

He, S., Feng, Y., Ren, H., Zhang, Y., Gu, N., Lin, X.: The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J. Soils Sediments. 11, 1408–1417 (2011). https://doi.org/10.1007/s11368-011-0415-7

Article  CAS  Google Scholar 

Pawlett, M., Ritz, K., Dorey, R.A., Rocks, S., Ramsden, J., Harris, J.A.: The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environ. Sci. Pollut. Res. Int. 20, 1041–1049 (2013). https://doi.org/10.1007/s11356-012-1196-2

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif