Graphitic carbon nitride (g-C3N4) based materials: current application trends in health and other multidisciplinary fields

Rono, N., Kibet, J.K., Martincigh, B.S., Nyamori, V.O.: A review of the current status of graphitic carbon nitride. Crit. Rev. Solid State Mater. Sci. 46, 1–29 (2020). https://doi.org/10.1080/10408436.2019.1709414

Article  CAS  Google Scholar 

Ismael, M.: A review on graphitic carbon nitride (g-C3N4) based nanocomposites: synthesis, categories, and their application in photocatalysis. J. Alloys Compd. 846, 156446 (2020). https://doi.org/10.1016/j.jallcom.2020.156446

Article  CAS  Google Scholar 

González-Rodríguez, J., Fernández, L., Bava, Y.B., Buceta, D., Vázquez-Vázquez, C., López-Quintela, M.A., Feijoo, G., Moreira, M.T.: Enhanced photocatalytic activity of semiconductor nanocomposites doped with ag nanoclusters under UV and visible light. Catalysts 10, 31 (2020). https://doi.org/10.3390/catal10010031

Article  CAS  Google Scholar 

Heo, N.S., Lee, S.U., Rethinasabapathy, M., Lee, E.Z., Cho, H.J., Oh, S.Y., Choe, S.R., Kim, Y., Hong, W.G., Krishnan, G.: Visible-light-driven dynamic cancer therapy and imaging using graphitic carbon nitride nanoparticles. Mater. Sci. Eng. C 90, 531–538 (2018). https://doi.org/10.1016/j.msec.2018.04.035

Article  CAS  Google Scholar 

Ong, W.J., Tan, L.L., Ng, Y.H., Yong, S.T., Chai, S.P.: Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075

Article  CAS  Google Scholar 

Reddy, I.N., Reddy, L.V., Jayashree, N., Reddy, C.V., Cho, M., Kim, D., Shim, J.: Vanadium-doped graphitic carbon nitride for multifunctional applications: photoelectrochemical water splitting and antibacterial activities. Chemosphere 264, 128593 (2021). https://doi.org/10.1016/j.chemosphere.2020.128593

Article  CAS  Google Scholar 

Chan, M.H., Liu, R.S., Hsiao, M.: Graphitic carbon nitride-based nanocomposites and their biological applications: a review. Nanoscale 11, 14993–15003 (2019). https://doi.org/10.1039/c9nr04568f

Article  CAS  Google Scholar 

Mohanraj, J., Durgalakshmi, D., Saravanan, R.: Water-soluble graphitic carbon nitride for clean environmental applications. Environ. Pollut. 269, 116172 (2021). https://doi.org/10.1016/j.envpol.2020.116172

Article  CAS  Google Scholar 

Vinoth, S., Devi, K.S., Pandikumar, A.: A comprehensive review on graphitic carbon nitride based electrochemical and biosensors for environmental and healthcare applications. Trends Analyt. Chem. 140, 116274 (2021). https://doi.org/10.1016/j.trac.2021.116274

Article  CAS  Google Scholar 

Dong, Y., Wang, Q., Wu, H., Chen, Y., Lu, C.H., Chi, Y., Yang, H.H.: Graphitic carbon nitride materials: sensing, imaging and therapy. Small 12, 5376–5393 (2016). https://doi.org/10.1002/smll.201602056

Article  CAS  Google Scholar 

Akple, M.S., Chimmikuttanda, S.P., Takyi, G.K.S., Elloh, V.W.: Fabrication and density functional theory calculations of bromine doped carbon nitride nanosheets with enhanced photocatalytic reduction of CO2 into solar fuels. Biointerface Res. Appl. Chem. 11, 14602–14619 (2021). https://doi.org/10.33263/briac116.1460214619

Article  CAS  Google Scholar 

Ajiboye, T.O., Kuvarega, A.T., Onwudiwe, D.C.: Graphitic carbon nitride-based catalysts and their applications: a review. Nano-Struct. 24, 100577 (2020). https://doi.org/10.1016/j.nanoso.2020.100577

Article  CAS  Google Scholar 

Zhang, J.R., Kan, Y.S., Gu, Ll., Wang, C.Y., Zhang, Y.: Graphite carbon nitride and its composites for medicine and health applications. Asian J. Chem. 16, 2003–2013 (2021). https://doi.org/10.1002/asia.202100499

Article  CAS  Google Scholar 

Liu, H., Wang, X., Wang, H., Nie, R.: Synthesis and biomedical applications of graphitic carbon nitride quantum dots. J. Mater. Chem. B 7, 5432–5448 (2019). https://doi.org/10.1039/c9tb01410a

Article  CAS  Google Scholar 

Perveen, M., Nazir, S., Arshad, A.W., Khan, M.I., Shamim, M., Ayub, K., Khan, M.A., Iqbal, J.: Therapeutic potential of graphitic carbon nitride as a drug delivery system for cisplatin (anticancer drug): a DFT approach. Biophys. Chem. 267, 106461 (2020). https://doi.org/10.1016/j.bpc.2020.106461

Article  CAS  Google Scholar 

Dasari, S., Tchounwou, P.B.: Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 740, 364–378 (2014). https://doi.org/10.1016/j.ejphar.2014.07.025

Article  CAS  Google Scholar 

Duan, X., He, C., Kron, S.J., Lin, W.: Nanoparticle formulations of cisplatin for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8, 776–791 (2016). https://doi.org/10.1002/wnan.1390

Article  CAS  Google Scholar 

Shamim, M., Perveen, M., Nazir, S., Hussnain, M., Mehmood, R., Khan, M.I., Iqbal, J.: DFT study of therapeutic potential of graphitic carbon nitride (g-C3N4) as a new drug delivery system for carboplatin to treat cancer. J. Mol. Liq. 331, 115607 (2021). https://doi.org/10.1016/j.molliq.2021.115607

Article  CAS  Google Scholar 

Taheri, H., Unal, M.A., Sevim, M., Gurcan, C., Ekim, O., Ceylan, A., Syrgiannis, Z., Christoforidis, K.C., Bosi, S., Ozgenç, O.: Photocatalytically active graphitic carbon nitride as an effective and safe 2D material for in vitro and in vivo photodynamic therapy. Small 16, 1904619 (2020). https://doi.org/10.1002/smll.201904619

Article  CAS  Google Scholar 

Feng, L., He, F., Yang, G., Gai, S., Dai, Y., Li, C., Yang, P.: NIR-driven graphitic-phase carbon nitride nanosheets for efficient bioimaging and photodynamic therapy. J. Mater. Chem. B 4, 8000–8008 (2016). https://doi.org/10.1039/c6tb02232d

Article  CAS  Google Scholar 

Davardoostmanesh, M., Ahmadzadeh, H., Goharshadi, E.K., Meshkini, A., Sistanipour, E.: Graphitic carbon nitride nanosheets prepared by electrophoretic size fractionation as an anticancer agent against human bone carcinoma. Mater. Sci. Eng. C 111, 110803 (2020). https://doi.org/10.1016/j.msec.2020.110803

Article  CAS  Google Scholar 

Das, C.A., Kumar, V.G., Dhas, T.S., Karthick, V., Kumar, C.V.: Nanomaterials in anticancer applications and their mechanism of action—a review. Nanomed. Nanotechnol. Biol. Med. 47, 102613 (2022). https://doi.org/10.1016/j.nano.2022.102613

Article  CAS  Google Scholar 

Lopes, J.C., Torres, M.L.P.: Utilização de nanopartículas no tratamento do câncer: aspectos gerais, mecanismos de ação antineoplásicos e aplicabilidades tumorais. Rev. Bras. Cancerol. 65, 13400 (2019). https://doi.org/10.32635/2176-9745.RBC.2019v65n4.400

Article  Google Scholar 

Dong, J., Zhao, Y., Chen, H., Liu, L., Zhang, W., Sun, B., Yang, M., Wang, Y., Dong, L.: Fabrication of PEGylated graphitic carbon nitride quantum dots as traceable, pH-sensitive drug delivery systems. New J. Chem. 42, 14263–14270 (2018). https://doi.org/10.1039/c8nj02542h

Article  CAS  Google Scholar 

Jiang, X., Feng, Y., Wang, J.: High-energy microwave synthesis of g-C3N4 nanosheets and its application as an anti-cancer drug carrier. FlatChem 30, 100311 (2021). https://doi.org/10.1016/j.flatc.2021.100311

Article  CAS  Google Scholar 

Kong, X., Liu, X., Zheng, Y., Chu, P.K., Zhang, Y., Wu, S.: Graphitic carbon nitride-based materials for photocatalytic antibacterial application. Mater. Sci. Eng. R Rep. 145, 100610 (2021). https://doi.org/10.1016/j.mser.2021.100610

Article  Google Scholar 

Li, Y., Liu, X., Tan, L., Cui, Z., Yang, X., Zheng, Y., Yeung, K.W.K., Chu, P.K., Wu, S.: Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g-C3N4 under dual light irradiation. Adv. Funct. Mater. 28, 1800299 (2018). https://doi.org/10.1002/adfm.201800299

Article  CAS  Google Scholar 

Xiang, Y., Zhou, Q., Li, Z., Cui, Z., Liu, X., Liang, Y., Zhu, S., Zheng, Y., Yeung, K.W.K., Wu, S.: A Z-scheme heterojunction of ZnO/CDots/C3N4 for strengthened photoresponsive bacteria-killing and acceleration of wound healing. J. Mater. Sci. Technol. 57, 1–11 (2020). https://doi.org/10.1016/j.jmst.2020.05.016

Article  CAS  Google Scholar 

Hasija, V., Singh, S.P., Nguyen, V.H., Le, Q.V., Thakur, V.K., Hussain, C.M., Selvasembian, R., Huang, C.W., Thakur, S.: Photocatalytic inactivation of viruses using graphitic carbon nitride-based photocatalysts: virucidal performance and mechanism. Catalysts 11, 1448 (2021). https://doi.org/10.3390/catal11121448

Article  CAS  Google Scholar 

Li, J., Yin, Y., Liu, E., Ma, Y., Wan, J., Fan, J., Hu, X.: In situ growing Bi2MoO6 on g-C3N4 nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation. J. Hazard. Mater. 321, 183–192 (2017). https://doi.org/10.1016/j.jhazmat.2016.09.008

Article  CAS  Google Scholar 

Wang, X., Hu, Y., Wei, H.: Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg. Chem. Front. 3, 41–60 (2016). https://doi.org/10.1039/C5QI00240K

Article  CAS  Google Scholar 

Huang, X., Gu, W., Ma, Y., Liu, D., Ding, N., Zhou, L., Lei, J., Wang, L., Zhang, J.: Recent advances of doped graphite carbon nitride for photocatalytic reduction of CO2: a review. Res. Chem. Intermed. 46, 5133–5164 (2020). https://doi.org/10.1007/s11164-020-04278-6

Article  CAS  Google Scholar 

Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., Wang, T., Feng, J., Yang, D., Perrett, S.: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577–583 (2007). https://doi.org/10.1038/nnano.2007.260

Article  CAS  Google Scholar 

Wei, H., Wang, E.: Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 80, 2250–2254 (2008). https://doi.org/10.1021/ac702203f

Article  CAS  Google Scholar 

Zhang, P., Sun, D., Cho, A., Weon, S., Lee, S., Lee, J., Han, J.W., Kim, D.P., Choi, W.: Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 10, 1–14 (2019). https://doi.org/10.1038/s41467-019-08731-y

Article  CAS  Google Scholar 

Emran, M.Y., Shenashen, M.A., El Sabagh, A., Selim, M.M., El-Safty, S.A.: Enzymeless copper microspheres@carbon sensor design for sensitive and selective acetylcholine screening in human serum. Colloids Surf. B Biointerfaces 210, 112228 (2022). https://doi.org/10.1016/j.colsurfb.2021.112228

Article  CAS  Google Scholar 

Sun, C., Chen, X., Xu, J., Wei, M., Wang, J., Mi, X., Wang, X., Wu, Y., Liu, Y.: Fabrication of an inorganic–organic hybrid based on an iron-substituted polyoxotungstate as a peroxidase for colorimetric immunoassays of H2O2 and cancer cells. J. Mater. Chem. A 1, 4699–4705 (2013). https://doi.org/10.1039/C3TA01255G

Article  CAS  Google Scholar 

Lee, Y.C., Kim, M.I., Woo, M.A., Park, H.G., Han, J.I.: Effective peroxidase-like activity of a water-solubilized Fe-aminoclay for use inimmunoassay. Biosens. Bioelectron. 42, 373–378 (2013). https://doi.org/10.1016/j.bios.2012.10.092

Article  CAS  Google Scholar 

Wang, Z., Dong, K., Liu, Z., Zhang, Y., Chen, Z., Sun, H., Ren, J., Qu, X.: Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 113, 145–157 (2017).

留言 (0)

沒有登入
gif