Experimental data and development of Weibull distribution model for relative dynamic modulus profile of PMMA/TiO2 polymer nanocomposites

Stephanovich, V.A., Kirichenko, E.V.: The influence of quantum fluctuations on phase transition temperature in disordered ferroelectrics. Phase Trans. 87(10–11), 1174–1180 (2014)

Article  CAS  Google Scholar 

Xia, X., Li, J., Zhang, J., Weng, G.J.: Uncovering the glass-transition temperature and temperature-dependent storage modulus of graphene-polymer nanocomposites through irreversible thermodynamic processes. Int. J. Eng. Sci. 158, 103411 (2021)

Article  CAS  Google Scholar 

Sponchioni, M., Palmiero, U.C., Moscatelli, D.: Thermo-responsive polymers: applications of smart materials in drug delivery and tissue engineering. Mater. Sci. Eng. C 102, 589–605 (2019)

Article  CAS  Google Scholar 

Ratri, P.J., Tashiro, K.: Phase-transition behavior of a crystalline polymer near the melting point: case studies of the ferroelectric phase transition of poly (vinylidene fluoride) and the β-to-α transition of trans-1, 4-polyisoprene. Polym. J. 45(11), 1107–1114 (2013)

Article  CAS  Google Scholar 

Biron, M.: Industrial applications of renewable plastics: environmental, technological, and economic advances. William Andrew, Norwich (2016)

Google Scholar 

Valentín, J.L., Posadas, P., Fernández-Torres, A., Malmierca, M.A., González, L., Chassé, W., Saalwachter, K.: Inhomogeneities and chain dynamics in diene rubbers vulcanized with different cure systems. Macromolecules 43(9), 4210–4222 (2010)

Article  Google Scholar 

Van Krevelen, D.W., Te Nijenhuis, K.: Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier (2009)

Hadjichristidis, N., Pitsikalis, M., Iatrou, H., Pispas, S.: The strength of the macromonomer strategy for complex macromolecular architecture: molecular characterization, properties and applications of polymacromonomers. Macromol. Rapid Commun. 24(17), 979–1013 (2003)

Article  CAS  Google Scholar 

Pradeepa, P., Edwinraj, S., Prabhu, M.R.: Effects of ceramic filler in poly (vinyl chloride)/poly (ethyl methacrylate) based polymer blend electrolytes. Chin. Chem. Lett. 26(9), 1191–1196 (2015)

Article  CAS  Google Scholar 

Idumah, C.I., Obele, C.M.: Understanding interfacial influence on properties of polymer nanocomposites. Surf. Interfaces 22, 100879 (2021)

Article  CAS  Google Scholar 

Corcione, C.E., Frigione, M.: Characterization of nanocomposites by thermal analysis. Materials 5(12), 2960–2980 (2012)

Article  CAS  Google Scholar 

Goyat, M.S., Rana, S., Halder, S., Ghosh, P.K.: Facile fabrication of epoxy-TiO2 nanocomposites: a critical analysis of TiO2 impact on mechanical properties and toughening mechanisms. Ultrason. Sonochem. 40, 861–873 (2018)

Article  CAS  Google Scholar 

Rahmat, M., Hubert, P.: Carbon nanotube–polymer interactions in nanocomposites: a review. Compos. Sci. Technol. 72(1), 72–84 (2011)

Article  CAS  Google Scholar 

Kanda, M., Puggal, S., Dhall, N., Sharma, A.: Recent developments in the fabrication, characterization, and properties enhancement of polymer Nanocomposites: a critical review. Mater. Today: Proc. 5(14), 28243–28252 (2018)

CAS  Google Scholar 

Bailey, E.J., Winey, K.I.: Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: a review. Prog. Polym. Sci. 105, 101242 (2020)

Article  CAS  Google Scholar 

Sarmazdeh, M.M., Mendi, R.T., Zelati, A., Boochani, A., Nofeli, F.: First-principles study of optical properties of InN nanosheet. Int. J. Mod. Phys. B 30(19), 1650117 (2016)

Article  CAS  Google Scholar 

Jazideh, A., Boochani, A., Nia, B.A.: Half-metallic, magneto-optic, and thermoelectric properties of CoRuVZ (Z= Al, Ga). Phys. Lett. A 414, 127622 (2021)

Article  CAS  Google Scholar 

Molamohammadi, M., Arman, A., Achour, A., et al.: Microstructure and optical properties of cobalt–carbon nanocomposites prepared by RF-sputtering. J Mater Sci: Mater Electron 26, 5964–5969 (2015)

CAS  Google Scholar 

Parameshwaran, R., Sarı, A., Jalaiah, N., Karunakaran, R.: Applications of thermal analysis to the study of phase-change materials. Handbook of Thermal Analysis and Calorimetry, vol. 6, pp. 519–572. Elsevier Science BV (2018)

Menard, K.P., Menard, N.R.: Dynamic mechanical analysis. CRC Press (2020)

Peng, Y.Y., Dussan, D.D. Narain, R.: Thermal, mechanical, and electrical properties. In: Polymer Science and Nanotechnology, pp. 179–201). Elsevier, Amsterdam (2020)

Leal-Junior, A.G., Marques, C., Frizera, A., Pontes, M.J.: Dynamic mechanical analysis on a polymethyl methacrylate (PMMA) polymer optical fiber. IEEE Sens. J. 18(6), 2353–2361 (2018)

Article  Google Scholar 

Yadav, A., Kumar, A., Singh, P.K., Sharma, K.: Glass transition temperature of functionalized graphene epoxy composites using molecular dynamics simulation. Integr. Ferroelectr. 186(1), 106–114 (2018)

Article  CAS  Google Scholar 

Hadipeykani, M., Aghadavoudi, F., Toghraie, D.: A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer-based epoxy nanocomposite reinforced by CNT: a statistical study. Physica A 546, 123995 (2020)

Article  CAS  Google Scholar 

Zhang, Y., Xu, X.: Machine learning glass transition temperature of polymers. Heliyon 6(10), e05055 (2020)

Article  CAS  Google Scholar 

Mathur, V., Sharma, K.: Thermal response of polystyrene/poly methyl methacrylate (PS/PMMA) polymeric blends. Heat Mass Transf. 52(12), 2901–2911 (2016)

Article  CAS  Google Scholar 

Boiko, Y.M.: Statistics of strength distribution upon the start of adhesion between glassy polymers. Colloid Polym. Sci. 294(11), 1727–1732 (2016)

Article  CAS  Google Scholar 

Richeton, J., Schlatter, G., Vecchio, K.S., Rémond, Y., Ahzi, S.: A unified model for stiffness modulus of amorphous polymers across transition temperatures and strain rates. Polymer 46(19), 8194–8201 (2005)

Article  CAS  Google Scholar 

Cook, R.F., DelRio, F.W.: Material flaw populations and component strength distributions in the context of the Weibull function. Exp. Mech. 59, 279–293 (2019)

Article  CAS  Google Scholar 

Chen, M., Jabeen, F., Rasulev, B., Ossowski, M., Boudjouk, P.: A computational structure—property relationship study of glass transition temperatures for a diverse set of polymers. J. Polym. Sci., Part B: Polym. Phys. 56(11), 877–885 (2018)

Article  CAS  Google Scholar 

Khan, P.M., Roy, K.: QSPR modelling for prediction of glass transition temperature of diverse polymers. SAR QSAR Environ. Res. 29(12), 935–956 (2018)

Article  CAS  Google Scholar 

Kusy, R.P., Greenberg, A.R.: Statistical mechanical theories of the glass transition—a new perspective. Polymer 23(1), 36–38 (1982)

Article  CAS  Google Scholar 

Hołyst, R., Vilgis, T.A.: The structure and phase transitions in polymer blends, diblock copolymers and liquid crystalline polymers: the Landau-Ginzburg approach. Macromol. Theory Simul. 5(4), 573–643 (1996)

Article  Google Scholar 

Boiko, Y., Marikhin, V., Myasnikova, L.: Statistical analysis of the mechanical behavior of high-performance polymers: Weibull’s or Gaussian distributions? Polymers 14(14), 2841 (2022)

Article  CAS  Google Scholar 

RK, S., Pandiyarajan, R.: Experimental and theoretical analysis of polymer blend composites using Weibull distribution. J. Chin. Inst. Eng. 45(7), 588–601 (2022)

Article  CAS  Google Scholar 

Bernal, R.A.: On the application of Weibull statistics for describing strength of micro and nanostructures. Mech. Mater. 162, 104057 (2021)

Article  Google Scholar 

Trustrum, K., Jayatilaka, A.D.S.: Applicability of Weibull analysis for brittle materials. J. Mater. Sci. 18, 2765–2770 (1983)

Article  Google Scholar 

Boiko, Y.M.: Weibull statistics of lap-shear strength development at partially self-healed polymer–polymer interfaces: a long-term contact. Colloid Polym. Sci. 295, 1993–1999 (2017)

Article  CAS  Google Scholar 

Mahieux, C.A., Reifsnider, K.L.: Property modeling across transition temperatures in polymers: a robust stiffness–temperature model. Polymer 42(7), 3281–3291 (2001)

Article  CAS  Google Scholar 

Mahieux, C.A., Reifsnider, K.L.: Property modeling across transition temperatures in polymers: application to thermoplastic systems. J. Mater. Sci. 37(5), 911–920 (2002)

Article  CAS  Google Scholar 

Lai, C. D., Murthy, D. N., Xie, M: Weibull distributions and their applications. In: Springer Handbooks, pp. 63–78. Springer, Berlin (2006)

Wong, D., Anwar, M., Debnath, S., Hamid, A. Izman, S.: The Influence of matrix density on the weibull modulus of natural fiber reinforced nanocomposites. In: Materials Science Forum, vol. 1074, pp. 3–9. Trans Tech Publications Ltd, Wollerau (2022)

Koti, V., Singh, K.K., Singh, R.K.: Experimental and statistical investigation on the wear and hardness behaviour of multiwalled carbon nanotubes reinforced copper nanocomposites. Wear 500, 204368 (2022)

Google Scholar 

Kopal, I., Bakošová, D., Koštial, P., Jančíková, Z., Valíček, J., Harničárová, M.: Weibull distribution application on temperature dependence of polyurethane storage modulus. Int. J. Mater. Res. 107(5), 472–476 (2016)

Article  CAS  Google Scholar 

Glaskova-Kuzmina, T., Starkova, O., Gaidukovs, S., Platnieks, O., Gaidukova, G.: Durability of biodegradable polymer nanocomposites. Polymers 13(19), 3375 (2021)

Article  CAS  Google Scholar 

https://www.itl.nist.gov/div898/handbook/eda/section3/eda3668.htm

https://www.weibull.com/hotwire/issue14/relbasics14.htm

Mathur, V., Bremananth, R., Arya, P.K.: Image analysis of PVC/TiO2 nanocomposites SEM micrographs. Micron 139, 102952 (2020)

Article  CAS  Google Scholar 

Mathur, V., Arya, P.K.: Assessment of tensile interphase profile of PVC/TiO2 polymer nanocomposites. Philos. Mag. Lett. 99(2), 87–94 (2019)

Article  CAS  Google Scholar 

Pothan, L.A., Oommen, Z., Thomas, S.: Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos. Sci. Technol. 63(2), 283–293 (2003)

Article  CAS  Google Scholar 

Ornaghi, H.L., Neves, R.M., Monticeli, F.M., Thomas, S.: Modeling of dynamic mechanical curves of kenaf/polyester composites using surface response methodology. J. Appl. Polym. Sci. 139(18), 52078 (2022)

Article  CAS 

留言 (0)

沒有登入
gif