Lipidomic analysis of brain and hippocampus from mice fed with high-fat diet and treated with fecal microbiota transplantation

Bascoul-Colombo C, Guschina IA, Maskrey BH, Good M, O’Donnell VB, Harwood JL. Dietary DHA supplementation causes selective changes in phospholipids from different brain regions in both wild type mice and the Tg2576 mouse model of Alzheimer’s disease. Biochem Biophys Acta. 2016;1861:524–37. https://doi.org/10.1016/j.bbalip.2016.03.005.

Article  CAS  PubMed  Google Scholar 

Cai H, Wen Z, Meng K, Yang P. Metabolomic signatures for liver tissue and cecum contents in high-fat diet-induced obese mice based on UHPLC-Q-TOF/MS. Nutr Metab. 2021;18:69. https://doi.org/10.1186/s12986-021-00595-8.

Article  CAS  Google Scholar 

Zhao Y-C, Zhou M-M, Zhang L-Y, Cong P-X, Xu J, Xue C-H, et al. Recovery of brain DHA-containing phosphatidylserine and ethanolamine plasmalogen after dietary DHA-enriched phosphatidylcholine and phosphatidylserine in SAMP8 mice fed with high-fat diet. Lipids Health Dis. 2020;19:104. https://doi.org/10.1186/s12944-020-01253-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun GY, Appenteng MK, Li R, Woo T, Yang B, Qin C, et al. Docosahexaenoic acid (DHA) supplementation alters phospholipid species and lipid peroxidation products in adult mouse brain, heart, and plasma. Neuromolecular Med. 2021;23:118–29. https://doi.org/10.1007/s12017-020-08616-0.

Article  CAS  PubMed  Google Scholar 

Zhang C, Zhou MM, Zhang TT, Cong PX, Xu J, Xue CH, et al. Effects of dietary supplementation with EPA-enriched phosphatidylcholine and phosphatidylethanolamine on glycerophospholipid profile in cerebral cortex of SAMP8 mice fed with high-fat diet. J Oleo Sci. 2021;70:275–87. https://doi.org/10.5650/jos.ess20212.

Article  CAS  PubMed  Google Scholar 

Lee JC, Park SM, Kim IY, Sung H, Seong JK, Moon MH. High-fat diet-induced lipidome perturbations in the cortex, hippocampus, hypothalamus, and olfactory bulb of mice. Biochim Biophys Acta. 2018;1863:980–90. https://doi.org/10.1016/j.bbalip.2018.05.007.

Article  CAS  Google Scholar 

Vagena E, Ryu JK, Baeza-Raja B, Walsh NM, Syme C, Day JP, et al. A high-fat diet promotes depression-like behavior in mice by suppressing hypothalamic PKA signaling. Transl Psychiatry. 2019;9:141. https://doi.org/10.1038/s41398-019-0470-1.

Article  PubMed  PubMed Central  Google Scholar 

Fan R, Hua Y, Shen J, Xiao R, Ma W. Dietary fatty acids affect learning and memory ability via regulating inflammatory factors in obese mice. J Nutr Biochem. 2022;2022:108959. https://doi.org/10.1016/j.jnutbio.2022.108959.

Article  CAS  Google Scholar 

Han X, Holtzman DM, McKeel DW Jr, Kelley J, Morris JC. Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem. 2002;82(4):809–18. https://doi.org/10.1046/j.1471-4159.2002.00997.x.

Article  CAS  PubMed  Google Scholar 

Kim HY, Huang BX, Spector AA. Phosphatidylserine in the brain: metabolism and function. Prog Lipid Res. 2014;56:1–18. https://doi.org/10.1016/j.plipres.2014.06.002.

Article  CAS  PubMed  Google Scholar 

Bader Lange ML, Cenini G, Piroddi M, Abdul HM, Sultana R, Galli F, et al. Loss of phospholipid asymmetry and elevated brain apoptotic protein levels in subjects with amnestic mild cognitive impairment and Alzheimer disease. Neurobiol Dis. 2008;29:456–64. https://doi.org/10.1016/j.nbd.2007.11.004.

Article  CAS  PubMed  Google Scholar 

Garcia-Mantrana I, Selma-Royo M, Alcantara C, Collado MC. Shifts on gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population. Front Microbiol. 2018;9:890. https://doi.org/10.3389/fmicb.2018.00890.

Article  PubMed  PubMed Central  Google Scholar 

Nagpal R, Shively CA, Appt SA, Register TC, Michalson KT, Vitolins MZ, et al. Gut Microbiome Composition in Non-human Primates Consuming a Western or Mediterranean Diet. Front Nutr. 2018;5:28. https://doi.org/10.3389/fnut.2018.00028.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu T, Hougen H, Vollmer AC, Hiebert SM. Gut bacteria profiles of Mus musculus at the phylum and family levels are influenced by saturation of dietary fatty acids. Anaerobe. 2012;18:331–7. https://doi.org/10.1016/j.anaerobe.2012.02.004.

Article  CAS  PubMed  Google Scholar 

Glandon HL, Loh AN, McLellan WA, Pabst DA, Westgate AJ, Koopman HN. Lipid signature of neural tissues of marine and terrestrial mammals: consistency across species and habitats. J Comp Physiol B. 2021;191:815–29. https://doi.org/10.1007/s00360-021-01373-x.

Article  CAS  PubMed  Google Scholar 

Shim JW, Jo SH, Kim SD, Lee HY, Yun J, Bae YS. Lysophosphatidylglycerol inhibits formyl peptide receptorlike-1-stimulated chemotactic migration and IL-1beta production from human phagocytes. Exp Mol Med. 2009;41:584–91. https://doi.org/10.3858/emm.2009.41.8.064.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kwiecinski J, Rhost S, Löfbom L, Blomqvist M, Månsson JE, Cardell SL, et al. Sulfatide attenuates experimental Staphylococcus aureus sepsis through a CD1d-dependent pathway. Infect Immun. 2013;81:1114–20. https://doi.org/10.1128/IAI.01334-12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan RB, Oliveira TG, Cortes EP, Honig LS, Duff KE, Small SA, et al. Comparative lipidomic analysis of mouse and human brain with Alzheimer disease. J Biol Chem. 2012;287:2678–88. https://doi.org/10.1074/jbc.M111.274142.

Article  CAS  PubMed  Google Scholar 

Fan R, Hua Y, Shen J, Liu Z, Kong W, Zhang M, et al. Effect of dietary fatty acids on hepatic and blood fatty acid profile and metabolic associated genes in obese mice. Chin J Food Hygiene. 2020;32:1–9. https://doi.org/10.13590/j.cjfh.2020.01.001.

Article  CAS  Google Scholar 

Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118:229–41. https://doi.org/10.1016/j.cell.2004.07.002.

Article  CAS  PubMed  Google Scholar 

Ye F, Wang X. Fecal bacteria preservation solution and its method for preservation of fecal bacteria. 2016, CN105385599A.

Yun F, Junjun K, Zongping F, Jiajia W, Xiao L, Huanhuan S, et al. Gut microbiota transplantation attenuates cerebral ischemia-reperfusion injury in aged mice by decreasing IL-17 levels. Chin J Cell Mol Immunol. 2019;35:52–7. https://doi.org/10.13423/j.cnki.cjcmi.008743.

Article  Google Scholar 

Liu MT, Huang YJ, Zhang TY, Tan LB, Lu XF, Qin J. Lingguizhugan decoction attenuates diet-induced obesity and hepatosteatosis via gut microbiota. World J Gastroenterol. 2019;25:3590–606. https://doi.org/10.3748/wjg.v25.i27.3590.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei H, Gu J, Jiang X, Deng N, Wu J, Zou L, et al. Anxiety disturbs the blood plasma metabolome in acute coronary syndrome patients. Sci Rep. 2021;11:12897. https://doi.org/10.1038/s41598-021-92421-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lord CC, Betters JL, Ivanova PT, Milne SB, Myers DS, Madenspacher J, et al. CGI-58/ABHD5-derived signaling lipids regulate systemic inflammation and insulin action. Diabetes. 2012;61:355–63. https://doi.org/10.2337/db11-0994.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schneider M, Levant B, Reichel M, Gulbins E, Kornhuber J, Müller CP. Lipids in psychiatric disorders and preventive medicine. Neurosci Biobehav Rev. 2017;76:336–62. https://doi.org/10.1016/j.neubiorev.2016.06.002.

Article  CAS  PubMed  Google Scholar 

Park HR, Park M, Choi J, Park K-Y, Chung HY, Lee J. A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci Lett. 2010;482:235–9. https://doi.org/10.1016/j.neulet.2010.07.046.

Article  CAS  PubMed  Google Scholar 

Jacka FN, Cherbuin N, Anstey KJ, Sachdev P, Butterworth P. Western diet is associated with a smaller hippocampus: a longitudinal investigation. BMC Med. 2015;13:215. https://doi.org/10.1186/s12916-015-0461-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu XG, Nicholson Puthenveedu S, Shen Y, La K, Ozlu C, Wang T, et al. CHP1 regulates compartmentalized glycerolipid synthesis by activating GPAT4. Mol Cell. 2019;74:45-58.e47. https://doi.org/10.1016/j.molcel.2019.01.037.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Ma Z, Zhong J, Li L, Min L, Xu L, et al. Simultaneous quantification of serum monounsaturated and polyunsaturated phosphatidylcholines as potential biomarkers for diagnosing non-small cell lung cancer. Sci Rep. 2018;8:7137. https://doi.org/10.1038/s41598-018-25552-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Wang N, Zhang S, Liang Q. Autophagy protects bone marrow mesenchymal stem cells from palmitate-induced apoptosis through the ROS-JNK/p38 MAPK signaling pathways. Mol Med Rep. 2018;18:1485–94. https://doi.org/10.3892/mmr.2018.9100.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Foster DA, Xu L. Phospholipase D in cell proliferation and cancer. Mol Cancer Res. 2003;1:789–800.

CAS  PubMed  Google Scholar 

Fujisawa T, Takeda K, Ichijo H. ASK family proteins in stress response and disease. Mol Biotechnol. 2007;37:13–8. https://doi.org/10.1007/s12033-007-0053-x.

Article  CAS  PubMed  Google Scholar 

Palicz A, Foubert TR, Jesaitis AJ, Marodi L, McPhail LC. Phosphatidic acid and diacylglycerol directly activate NADPH oxidase by interacting with enzyme components. J Biol Chem. 2001;276:3090–7. https://doi.org/10.1074/jbc.M007759200.

Article 

留言 (0)

沒有登入
gif