Feasibility of tele-guided patient-administered lung ultrasound in heart failure

Acute decompensated heart failure (HF) results in an excess of 1 million hospital admissions per year in the United States with approximately 25% of patients being readmitted within 30 days [1,2,3]. The economic burden of HF readmissions is substantial; the average HF-related admission costs in excess of $14,000, with over half of the $39.2 billion of direct costs of HF care attributable to hospital treatment [2, 4]. Most HF admissions are the result of progressive rise in intracardiac filling pressures leading to pulmonary congestion, which is characterized by an increase in extravascular lung water [5].Abbreviations: In Abbreviations section, the term “ICD” was repeated twice. So we have remove the repeated one. Kindly check and confirm.confirmed

Unfortunately, clinical features and cardiac biomarkers have limitations in detecting early manifestations of HF, and as a result, there is considerable interest in remote monitoring technologies [6, 7] that can detect HF decompensation at an early stage. Implantable hemodynamic monitoring systems, such as the CardioMEMS device, which are placed in the distal pulmonary artery, can detect early increases in pulmonary arterial pressure and have been shown to significantly decrease HF hospitalizations by up to 37% over a 15-month period [2, 3, 7]. However, this technology is invasive, and the cost of the device and implantation exceeds $19,000, with 5-year costs exceeding $188,000 per CardioMEMS patient [8].

Lung ultrasound (LUS), an easy to use, non-invasive, and affordable technology, is an appealing alternative to current options for early detection of HF, and has shown promise in its applicability to this field. B-line artifacts, laser-like vertical hyperechoic reverberations arising from the pleural line, are indicative of extravascular lung water [9,10,11,12]. B-lines observed with LUS correlate significantly with intracardiac filling pressures obtained by right heart catheterization and with radiographic pulmonary edema [9,10,11,12,13,14]. Although the presence of B-lines is not specific for pulmonary congestion, the absence of B-lines is highly predictive (> 90%) for low/normal pulmonary artery occlusion pressures [11]. Multiple studies have found LUS to be significantly more predictive of the diagnosis of HF than either biomarkers or clinical assessment, in settings spanning the pre-hospital, emergency, and inpatient setting [15,16,17,18].

In contrast to echocardiography, LUS image acquisition is simple, and windows require far less precision. Even in non-expert hands, LUS has very good accuracy in evaluating cardiogenic causes of dyspnea [9, 19,20,21]. Multiple studies have demonstrated strong agreement in LUS interpretation between experts and novices [15, 20, 21]. Short training sessions allow nurses to perform and interpret LUS in the evaluation of HF with high predictive value [19].

Recently, ultra-portable, low-cost ultrasound devices with remote guidance capability have become available, opening up the possibility of various tele medicine applications. The aim of this study was to explore the feasibility of tele-guided patient-administered lung ultrasound to detect early manifestations of HF. An FDA-approved, portable, hand-held ultrasound system consisting of a probe connected to a smart phone or tablet was distributed to patients with stable HF. Patients were remotely guided through image acquisition and uploading, and the recorded clips were analyzed for image quality and diagnostic usability.

留言 (0)

沒有登入
gif