Control of immune cell function by the unfolded protein response

Xu, C. & Ng, D. T. Glycosylation-directed quality control of protein folding. Nat. Rev. Mol. Cell Biol. 16, 742–752 (2015).

Article  CAS  Google Scholar 

Shiu, R. P., Pouyssegur, J. & Pastan, I. Glucose depletion accounts for the induction of two transformation-sensitive membrane proteins in Rous sarcoma virus-transformed chick embryo fibroblasts. Proc. Natl Acad. Sci. USA 74, 3840–3844 (1977).

Article  CAS  Google Scholar 

Kozutsumi, Y., Segal, M., Normington, K., Gething, M. J. & Sambrook, J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332, 462–464 (1988).

Article  CAS  Google Scholar 

Mori, K. The unfolded protein response: the dawn of a new field. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 91, 469–480 (2015).

Article  CAS  Google Scholar 

Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

Article  CAS  Google Scholar 

Hetz, C., Zhang, K. & Kaufman, R. J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 21, 421–438 (2020).

Article  CAS  Google Scholar 

Celli, J. & Tsolis, R. M. Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes? Nat. Rev. Microbiol. 13, 71–82 (2015).

Article  CAS  Google Scholar 

Tavernier, S. J., Lambrecht, B. N. & Janssens, S. The unfolded protein response in the immune cell development: putting the caretaker in the driving seat. Curr. Top. Microbiol. Immunol. 414, 45–721 (2018).

CAS  Google Scholar 

Bettigole, S. E. & Glimcher, L. H. Endoplasmic reticulum stress in immunity. Annu. Rev. Immunol. 33, 107–138 (2015).

Article  CAS  Google Scholar 

Martinon, F., Chen, X., Lee, A. H. & Glimcher, L. H. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat. Immunol. 11, 411–418 (2010). This study highlights the importance of XBP1s-mediated transcriptional regulation for optimizing macrophage polarization.

Article  CAS  Google Scholar 

Qiu, Q. et al. Toll-like receptor-mediated IRE1alpha activation as a therapeutic target for inflammatory arthritis. EMBO J. 32, 2477–2490 (2013).

Article  CAS  Google Scholar 

Keestra-Gounder, A. M. et al. NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532, 394–397 (2016).

Article  CAS  Google Scholar 

Sweet, L. A., Kuss-Duerkop, S. K. & Keestra-Gounder, A. M. IRE1alpha-driven inflammation promotes clearance of citrobacter rodentium infection. Infect. Immun. 90, e0048121 (2022).

Article  Google Scholar 

Iwasaki, Y. et al. Activating transcription factor 4 links metabolic stress to interleukin-6 expression in macrophages. Diabetes 63, 152–161 (2014).

Article  CAS  Google Scholar 

Hu, F. et al. ER stress and its regulator X-box-binding protein-1 enhance polyIC-induced innate immune response in dendritic cells. Eur. J. Immunol. 41, 1086–1097 (2011).

Article  CAS  Google Scholar 

Moretti, J. et al. STING senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum. Cell 171, 809–823 (2017).

Article  CAS  Google Scholar 

Barber, G. N. STING: infection, inflammation and cancer. Nat. Rev. Immunol. 15, 760–770 (2015).

Article  CAS  Google Scholar 

Zhang, D. et al. A non-canonical cGAS–STING–PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nat. Cell Biol. 24, 766–782 (2022).

Article  CAS  Google Scholar 

Chaudhary, V. et al. Chronic activation of pDCs in autoimmunity is linked to dysregulated ER stress and metabolic responses. J. Exp. Med. 219, e20221085 (2022).

Article  Google Scholar 

Goodall, J. C. et al. Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. Proc. Natl Acad. Sci. USA 107, 17698–17703 (2010).

Article  CAS  Google Scholar 

Marquez, S. et al. Endoplasmic reticulum stress sensor IRE1alpha enhances IL-23 expression by human dendritic cells. Front. Immunol. 8, 639 (2017).

Article  Google Scholar 

Mogilenko, D. A. et al. Metabolic and innate immune cues merge into a specific inflammatory response via the UPR. Cell 178, 263 (2019).

Article  CAS  Google Scholar 

Rosen, D. A. et al. Modulation of the sigma-1 receptor-IRE1 pathway is beneficial in preclinical models of inflammation and sepsis. Sci. Transl. Med. 11, eaau5266 (2019).

Article  CAS  Google Scholar 

Govindarajan, S. et al. Stabilization of cytokine mRNAs in iNKT cells requires the serine–threonine kinase IRE1alpha. Nat. Commun. 9, 5340 (2018).

Article  CAS  Google Scholar 

Chopra, S. et al. IRE1alpha-XBP1 signaling in leukocytes controls prostaglandin biosynthesis and pain. Science 365, eaau6499 (2019).

Article  CAS  Google Scholar 

Park, J. Y., Pillinger, M. H. & Abramson, S. B. Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clin. Immunol. 119, 229–240 (2006).

Article  CAS  Google Scholar 

Yan, D., Wang, H. W., Bowman, R. L. & Joyce, J. A. STAT3 and STAT6 signaling pathways synergize to promote cathepsin secretion from macrophages via IRE1alpha activation. Cell Rep. 16, 2914–2927 (2016).

Article  CAS  Google Scholar 

Dong, H. et al. The IRE1 endoplasmic reticulum stress sensor activates natural killer cell immunity in part by regulating c-Myc. Nat. Immunol. 20, 865–878 (2019). This study shows how UPR signalling regulates cMYC-mediated transcriptional and metabolic reprogramming of NK cells.

Article  CAS  Google Scholar 

Medel, B. et al. IRE1alpha activation in bone marrow-derived dendritic cells modulates innate recognition of melanoma cells and favors CD8(+) T cell priming. Front. Immunol. 9, 3050 (2018).

Article  CAS  Google Scholar 

Guttman, O. et al. Antigen-derived peptides engage the ER stress sensor IRE1alpha to curb dendritic cell cross-presentation. J. Cell Biol. 221, e202111068 (2022).

Article  CAS  Google Scholar 

Brunsing, R. et al. B- and T-cell development both involve activity of the unfolded protein response pathway. J. Biol. Chem. 283, 17954–17961 (2008).

Article  CAS  Google Scholar 

Pino, S. C. et al. Protein kinase C signaling during T cell activation induces the endoplasmic reticulum stress response. Cell Stress Chaperones 13, 421–434 (2008).

Article  CAS  Google Scholar 

Berry, C. T. et al. BCR-induced Ca(2+) signals dynamically tune survival, metabolic reprogramming, and proliferation of naive B cells. Cell Rep. 31, 107474 (2020).

Article  CAS  Google Scholar 

Michalak, M., Robert Parker, J. M. & Opas, M. Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 32, 269–278 (2002).

Article  CAS  Google Scholar 

Shaffer, A. L. et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21, 81–93 (2004).

Article  CAS  Google Scholar 

Wang, Z. V. et al. Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell 156, 1179–1192 (2014).

Article  CAS  Google Scholar 

Song, M. et al. IRE1alpha-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature 562, 423–428 (2018).

Article  CAS  Google Scholar 

Cao, Y. et al. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat. Commun. 10, 1280 (2019). This study shows that a tumour-derived factor alters the protein-folding machinery in T cells, which in turn leads to T cell dysfunction.

Article  Google Scholar 

Kamimura, D. & Bevan, M. J. Endoplasmic reticulum stress regulator XBP-1 contributes to effector CD8+T cell differentiation during acute infection. J. Immunol. 181, 5433–5441 (2008).

Article  CAS  Google Scholar 

Pramanik, J. et al. Genome-wide analyses reveal the IRE1a–XBP1 pathway promotes T helper cell differentiation by resolving secretory stress and accelerating proliferation. Genome Med. 10, 76 (2018).

Article  CAS  Google Scholar 

Bettigole, S. E. et al. The transcription factor XBP1 is selectively required for eosinophil differentiation. Nat. Immunol. 16, 829–837 (2015).

Article  CAS  Google Scholar 

Brucklacher-Waldert, V. et al. Cellular stress in the context of an inflammatory environment supports TGF-beta-independent T helper-17 differentiation. Cell Rep. 19, 2357–2370 (2017).

Article  CAS  Google Scholar 

Denzel, M. S. & Antebi, A. Hexosamine pathway and (ER) protein quality control. Curr. Opin. Cell Biol. 33, 14–18 (2015).

Article  CAS  Google Scholar 

Yang, X. et al. ATF4 regulates CD4(+) T cell immune responses through metabolic reprogramming. Cell Rep. 23, 1754–1766 (2018).

Article  CAS  Google Scholar 

Franco, A., Almanza, G., Burns, J. C., Wheeler, M. & Zanetti, M. Endoplasmic reticulum stress drives a regulatory phenotype in human T-cell clones. Cell Immunol. 266, 1–6 (2010).

Article  CAS  Google Scholar 

van Anken, E., Bakunts, A., Hu, C. A., Janssens, S. & Sitia, R. Molecular evaluation of endoplasmic reticulum homeostasis meets humoral immunity. Trends Cell Biol. 31, 529–541 (2021).

留言 (0)

沒有登入
gif