Assessing the applicability of 19F labeled tryptophan residues to quantify protein dynamics

Acchione M, Lee Y-C, DeSantis ME et al (2012) Specific fluorine labeling of the HyHEL10 antibody affects antigen binding and dynamics. Biochemistry 51:6017–6027. https://doi.org/10.1021/bi300455t

Article  Google Scholar 

Alderson TR, Kay LE (2021) NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell 184:577–595. https://doi.org/10.1016/j.cell.2020.12.034

Article  Google Scholar 

Aramini JM, Hamilton K, Ma L-C et al (2014) 19F NMR reveals multiple conformations at the dimer interface of the nonstructural protein 1 effector domain from influenza A virus. Structure 22:515–525. https://doi.org/10.1016/j.str.2014.01.010

Article  Google Scholar 

Audin MJC, Dorn G, Fromm SA et al (2013) The archaeal exosome: identification and quantification of site-specific motions that correlate with cap and RNA binding. Angew Chem Int Ed Engl 52:8312–8316. https://doi.org/10.1002/anie.201302811

Article  Google Scholar 

Baldwin AJ (2014) An exact solution for R2, eff in CPMG experiments in the case of two site chemical exchange. J Magn Reson 244:114–124. https://doi.org/10.1016/j.jmr.2014.02.023

Article  ADS  Google Scholar 

Bann JG, Pinkner J, Hultgren SJ, Frieden C (2002) Real-time and equilibrium 19 F-NMR studies reveal the role of domain–domain interactions in the folding of the chaperone PapD. Proc Natl Acad Sci USA 99:709–714. https://doi.org/10.1073/pnas.022649599

Article  ADS  Google Scholar 

Brüschweiler S, Schanda P, Kloiber K et al (2009) Direct observation of the dynamic process underlying allosteric signal transmission. J Am Chem Soc 131:3063–3068. https://doi.org/10.1021/ja809947w

Article  Google Scholar 

Brüschweiler S, Konrat R, Tollinger M (2013) Allosteric communication in the KIX domain proceeds through dynamic repacking of the hydrophobic core. ACS Chem Biol 8:1600–1610. https://doi.org/10.1021/cb4002188

Article  Google Scholar 

Campos-Olivas R, Aziz R, Helms GL et al (2002) Placement of 19 F into the center of GB1: effects on structure and stability. FEBS Lett 517:55–60. https://doi.org/10.1016/S0014-5793(02)02577-2

Article  Google Scholar 

Chrominski M, Baranowski MR, Chmielinski S et al (2020) Synthesis of trifluoromethylated purine ribonucleotides and their evaluation as 19F NMR probes. J Org Chem 85:3440–3453. https://doi.org/10.1021/acs.joc.9b03198

Article  Google Scholar 

Crowley PB, Kyne C, Monteith WB (2012) Simple and inexpensive incorporation of 19F-Tryptophan for protein NMR spectroscopy. Chem Commun 48:10681. https://doi.org/10.1039/c2cc35347d

Article  Google Scholar 

Dalvit C, Vulpetti A (2016) Weak intermolecular hydrogen bonds with fluorine: detection and implications for enzymatic/chemical reactions, chemical properties, and ligand/protein fluorine NMR screening. Chem Eur J 22:7592–7601. https://doi.org/10.1002/chem.201600446

Article  Google Scholar 

Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

Article  Google Scholar 

Didenko T, Liu JJ, Horst R et al (2013) Fluorine-19 NMR of integral membrane proteins illustrated with studies of GPCRs. Curr Opin Struct Biol 23:740–747. https://doi.org/10.1016/j.sbi.2013.07.011

Article  Google Scholar 

Farber PJ, Mittermaier A (2015) Relaxation dispersion NMR spectroscopy for the study of protein allostery. Biophys Rev 7:191–200. https://doi.org/10.1007/s12551-015-0166-6

Article  Google Scholar 

Floor SN, Borja MS, Gross JD (2012) Interdomain dynamics and coactivation of the mRNA decapping enzyme Dcp2 are mediated by a gatekeeper tryptophan. Proc Natl Acad Sci USA 109:2872–2877. https://doi.org/10.1073/pnas.1113620109

Article  ADS  Google Scholar 

Frei JN, Broadhurst RW, Bostock MJ et al (2020) Conformational plasticity of ligand-bound and ternary GPCR complexes studied by 19F NMR of the β1-adrenergic receptor. Nat Commun 11:669. https://doi.org/10.1038/s41467-020-14526-3

Article  ADS  Google Scholar 

Fuchs A-L, Wurm JP, Neu A, Sprangers R (2020) Molecular basis of the selective processing of short mRNA substrates by the DcpS mRNA decapping enzyme. Proc Natl Acad Sci USA 117:19237–19244. https://doi.org/10.1073/pnas.2009362117

Article  ADS  Google Scholar 

Furter R (1998) Expansion of the genetic code: Site-directed p-fluoro-phenylalanine incorporation in Escherichia coli: In vivo site-directed analogue incorporation. Protein Sci 7:419–426. https://doi.org/10.1002/pro.5560070223

Article  Google Scholar 

Gronenborn AM (2022) Small, but powerful and attractive: 19F in biomolecular NMR. Structure 30:6–14. https://doi.org/10.1016/j.str.2021.09.009

Article  Google Scholar 

Gu M, Fabrega C, Liu SW et al (2004) Insights into the structure, mechanism, and regulation of scavenger mRNA decapping activity. Mol Cell 14:67–80. https://doi.org/10.1016/S1097-2765(04)00180-7

Article  Google Scholar 

Hennig M, Scott LG, Sperling E et al (2007) Synthesis of 5-fluoropyrimidine nucleotides as sensitive NMR probes of RNA structure. J Am Chem Soc 129:14911–14921. https://doi.org/10.1021/ja073825i

Article  Google Scholar 

Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972. https://doi.org/10.1038/nature06522

Article  ADS  Google Scholar 

Hoang J, Prosser RS (2014) Conformational selection and functional dynamics of calmodulin: a 19F nuclear magnetic resonance study. Biochemistry 53:5727–5736. https://doi.org/10.1021/bi500679c

Article  Google Scholar 

Hoffmann F, Mulder FAA, Schäfer LV (2022) How much entropy is contained in NMR relaxation parameters? J Phys Chem B 126:54–68. https://doi.org/10.1021/acs.jpcb.1c07786

Article  Google Scholar 

Hull WE, Sykes BD (1974) Fluorotyrosine alkaline phosphatase. Fluorine-19 nuclear magnetic resonance relaxation times and molecular motion of the individual fluorotyrosines. Biochemistry 13:3431–3437. https://doi.org/10.1021/bi00714a002

Article  Google Scholar 

Jackson JC, Hammill JT, Mehl RA (2007) Site-specific incorporation of a 19F-amino acid into proteins as an NMR probe for characterizing protein structure and reactivity. J Am Chem Soc 129:1160–1166. https://doi.org/10.1021/ja064661t

Article  Google Scholar 

Kasinath V, Sharp KA, Wand AJ (2013) Microscopic insights into the NMR relaxation-based protein conformational entropy meter. J Am Chem Soc 135:15092–15100. https://doi.org/10.1021/ja405200u

Article  Google Scholar 

Khan F, Kuprov I, Craggs TD et al (2006) 19F NMR studies of the native and denatured states of green fluorescent protein. J Am Chem Soc 128:10729–10737. https://doi.org/10.1021/ja060618u

Article  Google Scholar 

Kim TH, Chung KY, Manglik A et al (2013) The role of ligands on the equilibria between functional states of a G protein-coupled receptor. J Am Chem Soc 135:9465–9474. https://doi.org/10.1021/ja404305k

Article  Google Scholar 

Kitevski-LeBlanc JL, Prosser RS (2012) Current applications of 19F NMR to studies of protein structure and dynamics. Prog Nucl Magn Reson Spectrosc 62:1–33. https://doi.org/10.1016/j.pnmrs.2011.06.003

Article  Google Scholar 

Kloiber K, Spitzer R, Grutsch S et al (2011) Longitudinal exchange: an alternative strategy towards quantification of dynamics parameters in ZZ exchange spectroscopy. J Biomol NMR 51:123–129. https://doi.org/10.1007/s10858-011-9547-8

Article  Google Scholar 

Lau EY, Gerig JT (2000) Origins of fluorine NMR chemical shifts in fluorine-containing proteins. J Am Chem Soc 122:4408–4417. https://doi.org/10.1021/ja992107w

Article  Google Scholar 

Liebau J, Tersa M, Trastoy B et al (2020) Unveiling the activation dynamics of a fold-switch bacterial glycosyltransferase by 19F NMR. J Biol Chem 295:9868–9878. https://doi.org/10.1074/jbc.RA120.014162

Article  Google Scholar 

Liu JJ, Horst R, Katritch V et al (2012) Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335:1106–1110. https://doi.org/10.1126/science.1215802

Article  ADS  Google Scholar 

Lu M, Ishima R, Polenova T, Gronenborn AM (2019) 19F NMR relaxation studies of fluorosubstituted tryptophans. J Biomol NMR 73:401–409. https://doi.org/10.1007/s10858-019-00268-y

Article  Google Scholar 

Luck LA, Vance JE, O’Connell TM, London RE (1996) 19F NMR relaxation studies on 5-fluorotryptophan- and tetradeutero-5-fluorotryptophan-labeled E. coli glucose/galactose receptor. J Biomol NMR. https://doi.org/10.1007/BF00200428

Article  Google Scholar 

Manglik A, Kim TH, Masureel M et al (2015) Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161:1101–1111. https://doi.org/10.1016/j.cell.2015.04.043

Article  Google Scholar 

Minks C, Huber R, Moroder L, Budisa N (1999) Atomic mutations at the single tryptophan residue of human recombinant annexin V: effects on structure, stability, and activity. Biochemistry 38:10649–10659. https://doi.org/10.1021/bi990580g

Article  Google Scholar 

Neu A, Neu U, Fuchs A-L et al (2015) An excess of catalytically required motions inhibits the scavenger decapping enzyme. Nat Chem Biol 11:697–704. https://doi.org/10.1038/nchembio.1866

Article  Google Scholar 

Overbeck JH, Kremer W, Sprangers R (2020) A suite of 19F based relaxation dispersion experiments to assess biomolecular motions. J Biomol NMR 74:753–766. https://doi.org/10.1007/s10858-020-00348-4

Article  Google Scholar 

Overbeck JH, Stelzig D, Fuchs A-L et al (2022) Observation of conformational changes that underlie the catalytic cycle of Xrn2. Nat Chem Biol 18:1152–1160. https://doi.org/10.1038/s41589-022-01111-6

Article  Google Scholar 

Palmer AG (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104:3623–3640

Article  Google Scholar 

Palmer AG, Massi F (2006) Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy. Chem Rev 106:1700–1719. https://doi.org/10.1021/cr0404287

Article  Google Scholar 

Pan B, Liu D, Yang L, Wüthrich K (2022) GPCR large-amplitude dynamics by 19F-NMR of aprepitant bound to the neurokinin 1 receptor. Proc Natl Acad Sci USA 119:e2122682119. https://doi.org/10.1073/pnas.2122682119

Article  Google Scholar 

Puffer B, Kreutz C, Rieder U et al (2009) 5-Fluoro pyrimidines: labels to probe DNA and RNA secondary structures by 1D 19 F NMR spectroscopy. Nucleic Acids Res 37:7728–7740. https://doi.org/10.1093/nar/gkp862

Article  Google Scholar 

Ruben EA, Gandhi PS, Chen Z et al (2020) 19F NMR reveals the conformational properties of free thrombin and its zymogen precursor prethrombin-2. J Biol Chem 295:8227–8235. https://doi.org/10.1074/jbc.RA120.013419

Article  Google Scholar 

Sarker M, Orrell KE, Xu L et al (2016) Tracking transitions in spider wrapping silk conformation and dynamics by 19 F nuclear magnetic resonance spectroscopy. Biochemistry 55:3048–3059. https://doi.org/10.1021/acs.biochem.6b00429

Article  Google Scholar 

Schanda P, Brutscher B (2006) Hadamard frequency-encoded SOFAST-HMQC for ultrafast two-dimensional protein NMR. J Magn Reson 178:334–339. https://doi.org/10.1016/j.jmr.2005.10.007

留言 (0)

沒有登入
gif