Vascular lipidomics analysis reveales increased levels of phosphocholine and lysophosphocholine in atherosclerotic mice

Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, Tokgozoglu L, Lewis EF. Atherosclerosis. Nat Rev Dis Primers. 2019;5:56.

Article  Google Scholar 

World Health Organization. Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (2020). Accessed 27 Nov 2020.

Gimbrone MA Jr, Garcia-Cardena G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118:620–36.

Article  Google Scholar 

Libby P, Kobold S. Inflammation: a common contributor to cancer, aging, and cardiovascular diseases-expanding the concept of cardio-oncology. Cardiovasc Res. 2019;115:824–9.

Article  Google Scholar 

Bjorkegren JLM, Lusis AJ. Atherosclerosis: recent developments. Cell. 2022;185:1630–45.

Article  Google Scholar 

Casares D, Escriba PV, Rossello CA. Membrane lipid composition: effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int J Mol Sci. 2019;20:20167.

Article  Google Scholar 

Bobryshev YV, Nikiforov NG, Elizova NV, Orekhov AN. Macrophages and their contribution to the development of atherosclerosis. Results Probl Cell Differ. 2017;62:273–98.

Article  Google Scholar 

Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res. 2020;116:1254–74.

Article  Google Scholar 

Mehta A, Shapiro MD. Apolipoproteins in vascular biology and atherosclerotic disease. Nat Rev Cardiol. 2022;19:168–79.

Article  Google Scholar 

Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, Hegele RA, Krauss RM, Raal FJ, Schunkert H, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38:2459–72.

Article  Google Scholar 

Duarte Lau F, Giugliano RP. Lipoprotein(a) and its significance in cardiovascular disease: a review. JAMA Cardiol. 2022;7:760–9.

Article  Google Scholar 

Han X, Gross RW. The foundations and development of lipidomics. J Lipid Res. 2022;63:100164.

Article  Google Scholar 

Ahluwalia K, Ebright B, Chow K, Dave P, Mead A, Poblete R, Louie SG, Asante I. Lipidomics in understanding pathophysiology and pharmacologic effects in inflammatory diseases: considerations for drug development. Metabolites. 2022;12:333.

Article  Google Scholar 

Han X, Gross RW. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci U S A. 1994;91:10635–9.

Article  Google Scholar 

Di Giorgi N, Michelucci E, Smit JM, Scholte A, El Mahdiui M, Knuuti J, Buechel RR, Teresinska A, Pizzi MN, Roque A, et al. A specific plasma lipid signature associated with high triglycerides and low HDL cholesterol identifies residual CAD risk in patients with chronic coronary syndrome. Atherosclerosis. 2021;339:1–11.

Article  Google Scholar 

You Q, Peng Q, Yu Z, Jin H, Zhang J, Sun W, Huang Y. Plasma lipidomic analysis of sphingolipids in patients with large artery atherosclerosis cerebrovascular disease and cerebral small vessel disease. 2020. Biosci Rep. https://doi.org/10.1042/BSR20201519.

Wang H, Zhang L, Zhang X, Song J, Guo Q, Zhang X, Bai D. Prediction model for different progressions of Atherosclerosis in ApoE(-/-) mice based on lipidomics. J Pharm Biomed Anal. 2022;214:114734.

Article  Google Scholar 

Talib J, Hains PG, Tumanov S, Hodson MP, Robinson PJ, Stocker R. Barocycler-based concurrent multiomics method to assess molecular changes associated with atherosclerosis using small amounts of arterial tissue from a single mouse. Anal Chem. 2019;91:12670–9.

Article  Google Scholar 

Xing SS, Yang J, Li WJ, Li J, Chen L, Yang YT, Lei X, Li J, Wang K, Liu X. Salidroside decreases atherosclerosis plaque formation via inhibiting endothelial cell pyroptosis. Inflammation. 2020;43:433–40.

Article  Google Scholar 

Xu S, Chen H, Ni H, Dai Q. Targeting HDAC6 attenuates nicotine-induced macrophage pyroptosis via NF-kappaB/NLRP3 pathway. Atherosclerosis. 2021;317:1–9.

Article  Google Scholar 

Shuey MM, Xiang RR, Moss ME, Carvajal BV, Wang Y, Camarda N, Fabbri D, Rahman P, Ramsey J, Stepanian A, et al. Systems approach to integrating preclinical apolipoprotein E-Knockout investigations reveals novel etiologic pathways and master atherosclerosis network in humans. Arterioscler Thromb Vasc Biol. 2022;42:35–48.

Article  Google Scholar 

Chen C, Cui S, Li W, Jin H, Fan J, Sun Y, Cui Z. Ingenuity pathway analysis of human facet joint tissues: insight into facet joint osteoarthritis. Exp Ther Med. 2020;19:2997–3008.

Google Scholar 

Wishart DS, Guo A, Oler E, Wang F, Anjum A, Peters H, Dizon R, Sayeeda Z, Tian S, Lee BL, et al. HMDB 5.0: the Human Metabolome Database for 2022. Nucleic Acids Res. 2022;50:D622–31.

Article  Google Scholar 

Cole LK, Dolinsky VW, Dyck JR, Vance DE. Impaired phosphatidylcholine biosynthesis reduces atherosclerosis and prevents lipotoxic cardiac dysfunction in ApoE-/- Mice. Circ Res. 2011;108:686–94.

Article  Google Scholar 

Aldana-Hernandez P, Azarcoya-Barrera J, van der Veen JN, Leonard KA, Zhao YY, Nelson R, Goruk S, Field CJ, Curtis JM, Richard C, Jacobs RL. Dietary phosphatidylcholine supplementation reduces atherosclerosis in Ldlr(-/-) male mice(2). J Nutr Biochem. 2021;92:108617.

Article  Google Scholar 

Liu P, Zhu W, Chen C, Yan B, Zhu L, Chen X, Peng C. The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci. 2020;247:117443.

Article  Google Scholar 

Pirillo A, Casula M, Olmastroni E, Norata GD, Catapano AL. Global epidemiology of dyslipidaemias. Nat Rev Cardiol. 2021;18:689–700.

Article  Google Scholar 

Raposeiras-Roubin S, Rossello X, Oliva B, Fernandez-Friera L, Mendiguren JM, Andres V, Bueno H, Sanz J, Martinez de Vega V, Abu-Assi E, et al. Triglycerides and residual atherosclerotic risk. J Am Coll Cardiol. 2021;77:3031–41.

Article  Google Scholar 

Su D, Liao L, Zeng Q, Liao Z, Liu Y, Jin C, Zhu G, Chen C, Yang M, Ai Z, Song Y. Study on the new anti-atherosclerosis activity of different Herba patriniae through down-regulating lysophosphatidylcholine of the glycerophospholipid metabolism pathway. Phytomedicine. 2022;94:153833.

Article  Google Scholar 

Dang VT, Zhong LH, Huang A, Deng A, Werstuck GH. Glycosphingolipids promote pro-atherogenic pathways in the pathogenesis of hyperglycemia-induced accelerated atherosclerosis. Metabolomics. 2018;14:92.

Article  Google Scholar 

Furse S, de Kroon AI. Phosphatidylcholine’s functions beyond that of a membrane brick. Mol Membr Biol. 2015;32:117–9.

Article  Google Scholar 

van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9:112–24.

Article  Google Scholar 

Kennedy EP, Weiss SB. The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem. 1956;222:193–214.

Article  Google Scholar 

Sundler R, Akesson B. Biosynthesis of phosphatidylethanolamines and phosphatidylcholines from ethanolamine and choline in rat liver. Biochem J. 1975;146:309–15.

Article  Google Scholar 

Maiseyeu A, Mihai G, Kampfrath T, Simonetti OP, Sen CK, Roy S, Rajagopalan S, Parthasarathy S. Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis. J Lipid Res. 2009;50:2157–63.

Article  Google Scholar 

Chaudhry F, Kawai H, Johnson KW, Narula N, Shekhar A, Chaudhry F, Nakahara T, Tanimoto T, Kim D, Adapoe M, et al. Molecular imaging of apoptosis in atherosclerosis by targeting cell membrane phospholipid asymmetry. J Am Coll Cardiol. 2020;76:1862–74.

Article  Google Scholar 

Schutters K, Kusters DH, Chatrou ML, Montero-Melendez T, Donners M, Deckers NM, Krysko DV, Vandenabeele P, Perretti M, Schurgers LJ, Reutelingsperger CP. Cell surface-expressed phosphatidylserine as therapeutic target to enhance phagocytosis of apoptotic cells. Cell Death Differ. 2013;20:49–56.

Article  Google Scholar 

Zalloua P, Kadar H, Hariri E, Abi Farraj L, Brial F, Hedjazi L, Le Lay A, Colleu A, Dubus J, Touboul D, et al. Untargeted Mass Spectrometry Lipidomics identifies correlation between serum sphingomyelins and plasma cholesterol. Lipids Health Dis. 2019;18:38.

Article  Google Scholar 

Ridgway ND. The role of phosphatidylcholine and choline metabolites to cell proliferation and survival. Crit Rev Biochem Mol Biol. 2013;48:20–38.

Article  Google Scholar 

Liu J, Yuan J, Zhao J, Zhang L, Wang Q, Wang G. Serum metabolomic patterns in young patients with ischemic stroke: a case study. Metabolomics. 2021;17:24.

Article  Google Scholar 

Djekic D, Pinto R, Repsilber D, Hyotylainen T, Henein M. Serum untargeted lipidomic profiling reveals dysfunction of phospholipid metabolism in subclinical coronary artery disease. Vasc Health Risk Manag. 2019;15:123–35.

Article  Google Scholar 

McMaster CR. From yeast to humans—roles of the Kennedy pathway for phosphatidylcholine synthesis. FEBS Lett. 2018;592:1256–72.

Article  Google Scholar 

Mannheim D, Herrmann J, Versari D, Gossl M, Meyer FB, McConnell JP, Lerman LO, Lerman A. Enhanced expression of Lp-PLA2 and lysophosphatidylcholine in symptomatic carotid atherosclerotic plaques. Stroke. 2008;39:1448–55.

Article  Google Scholar 

Vitali C, Cuchel M. Controversial role of lecithin: cholesterol acyltransferase in the development of atherosclerosis: new insights from an LCAT activator. Arterioscler Thromb Vasc Biol. 2021;41:377–9.

Google Scholar 

Aiyar N, Disa J, Ao Z, Ju H, Nerurkar S, Willette RN, Macphee CH, Johns DG, Douglas SA. Lysophosphatidylcholine induces inflammatory activation of human coronary artery smooth muscle cells. Mol Cell Biochem. 2007;295:113–20.

Article  Google Scholar 

Schmitz G, Ruebsaamen K. Metabolism and atherogenic disease association of lysophosphatidylcholine. Atherosclerosis. 2010;208:10–8.

Article  Google Scholar 

Polonis K, Wawrzyniak R, Daghir-Wojtkowiak E, Szyndler A, Chrostowska M, Melander O, Hoffmann M, Kordalewska M, Raczak-Gutknecht J, Bartosinska E, et al. Metabolomic signature of early vascular aging (EVA) in hypertension. Front Mol Biosci. 2020;7:12.

Article  Google Scholar 

Goncalves I, Edsfeldt A, Ko NY, Grufman H, Berg K, Bjorkbacka H, Nitulescu M, Persson A, Nilsson M, Prehn C, et al. Evidence supporting a key role of Lp-PLA2-generated lysophosphatidylcholine in human atherosclerotic plaque inflammation. Arterioscler Thromb Vasc Biol. 2012;32:1505–12.

Article  Google Scholar 

Eldrid C, Thalassinos K. Developments in tandem ion mobility mass spectrometry. Biochem Soc Trans. 2020;48:2457–66.

Article  Google Scholar 

Zardini Buzatto A, Kwon BK, Li L. Development of a NanoLC-MS workflow for high-sensitivity global lipidomic analysis. Anal Chim Acta. 2020;1139:88–99.

Article  Google Scholar 

Sun C, Li T, Song X, Huang L, Zang Q, Xu J, Bi N, Jiao G, Hao Y, Chen Y, et al. Spatially resolved metabolomics to discover tumor-associated metabolic alterations. Proc Natl Acad Sci U S A. 2019;116:52–7.

留言 (0)

沒有登入
gif