Nanoparticles: a promising vehicle for the delivery of therapeutic enzymes

Robinson, P.K.: Enzymes: principles and biotechnological applications. Essays Biochem. 59, 1–41 (2015). https://doi.org/10.1042/BSE0590001

Article  Google Scholar 

Rizvi, S.A.A., Saleh, A.M.: Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J. 26, 64–70 (2018). https://doi.org/10.1016/j.jsps.2017.10.012

Article  Google Scholar 

Sabu, A.: Sources, properties and applications of microbial therapeutic enzymes. Indian J. Biotechnol. 2, 334–341 (2003)

CAS  Google Scholar 

Vellard, M.: The enzyme as drug : application of enzymes as pharmaceuticals. Curr. Opin. Biotechnol. 14, 444–450 (2003). https://doi.org/10.1016/S0958-1669(03)00092-2

Article  CAS  Google Scholar 

Raveendran, S., Parameswaran, B., Ummalyma, S.B., Abraham, A., Mathew, A.K., Madhavan, A., Rebello, S., Pandey, A.: Applications of microbial enzymes in food industry. Food Technol. Biotechnol. 56, 16–30 (2018)

Article  CAS  Google Scholar 

Emerich, D.F., Thanos, C.G.: The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol. Eng. 23, 171–184 (2006). https://doi.org/10.1016/j.bioeng.2006.05.026

Article  CAS  Google Scholar 

Singh, R., Lillard, J.W.: Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86, 215–223 (2009). https://doi.org/10.1016/j.yexmp.2008.12.004

Article  CAS  Google Scholar 

Biswas, A.K., Islam, M.R., Choudhury, Z.S., Mostafa, A., Kadir, M.F.: Nanotechnology based approaches in cancer therapeutics. Adv. Nat. Sci. Nanosci. Nanotechnol. (2014). https://doi.org/10.1088/2043-6262/5/4/043001

Article  Google Scholar 

Hanahan, D., Weinberg, R. A.: Biological hallmarks of cancer. Holland‐Frei Cancer Medicine, pp 1–10 (2016).

Baudino, T.A.: Targeted Cancer Therapy: The Next Generation of Cancer Treatment. Curr. Drug Discov. Technol. 12, 3–20 (2015)

Article  CAS  Google Scholar 

Oerlemans, C., Bult, W., Bos, M., Storm, G., Nijsen, J.F.W., Hennink, W.E.: Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm. Res. 27, 2569–2589 (2010). https://doi.org/10.1007/s11095-010-0233-4

Article  CAS  Google Scholar 

Zhang, J., Marksaltzman, W.: Engineering biodegradable nanoparticles for drug and gene delivery. Chem. Eng. Prog. 109, 25–30 (2013)

CAS  Google Scholar 

Li, X., Naeem, A., Xiao, S., Hu, L., Zhang, J., Zheng, Q.: Safety challenges and application strategies for the use of dendrimers in medicine. Pharmaceutics. 17(14), 6–1292 (2022)

Google Scholar 

Rizvi, S.A.A., Saleh, A.M.: Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J. 26, 64–70 (2018). https://doi.org/10.1016/j.jsps.2017.10.012

Article  Google Scholar 

Kolluru, L.P., Rizvi, S.A.A., D’Souza, M., D’Souza, M.J.: Formulation development of albumin based theragnostic nanoparticles as a potential delivery system for tumor targeting. J. Drug Target. 21, 77–86 (2013). https://doi.org/10.3109/1061186X.2012.729214

Article  CAS  Google Scholar 

Wolfbeis, O.S.: An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 44, 4743–4768 (2015). https://doi.org/10.1039/c4cs00392f

Article  CAS  Google Scholar 

Janib, S.M., Moses, A.S., MacKay, J.A.: Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 62, 1052–1063 (2010). https://doi.org/10.1016/j.addr.2010.08.004

Article  CAS  Google Scholar 

Bhojani, M.S., Dort, M.V., Rehemtulla, A., Ross, B.D.: Targeted imaging and therapy of brain cancer using brain tumors : current status. Mol. Pharm. 7, 1921–1929 (2010)

Article  CAS  Google Scholar 

Bartlett, J.G., Moore, R.D.: Improving HIV therapy. Sci. Am. (1998). https://doi.org/10.1038/scientificamerican0798-84

Article  Google Scholar 

Mamo, T., Moseman, E., Ashley, N.K., Morales, C.S., Shi, J., Dkuritzkes, A.R., Robert, L., von Ulrich, A., Farokhzad, O.C.: Emerging nanotechnology approaches for HIV/AIDS treatment and prevention Review. Nanomedicine 5, 269–285 (2010)

Article  CAS  Google Scholar 

da Lindner, R.G., Santos, D.B., Colle, D., Moreira, E.L.G., Prediger, R.D., Farina, M., Khalil, N.M., Mainardes, R.M.: Improved neuroprotective effects of poly(lactide) nanoparticles in MPTP-induced Parkinsonism. Nanomedicine 10, 1127–1138 (2015)

Article  CAS  Google Scholar 

Jayant, R.D.: Nanotechnology for the treatment of NeuroAIDS. J. Nanomedicine Res. 3, 3–5 (2016)

Article  Google Scholar 

Shah, L.K., Amiji, M.M.: Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS. Pharm. Res. 23, 2638–2645 (2006). https://doi.org/10.1007/s11095-006-9101-7

Article  CAS  Google Scholar 

Patra, J.K., Das, G., Fraceto, L.F., Campos, E.V.R., Rodriguez-Torres, M.D.P., Acosta-Torres, L.S., Diaz-Torres, L.A., Grillo, R., Swamy, M.K., Sharma, S., Habtemariam, S., Shin, H.S.: Nano based drug delivery systems: recent developments and future prospects 10 technology 1007 nanotechnology 03 chemical sciences 0306 physical chemistry (incl. structural) 03 chemical sciences 0303 macromolecular and materials chemistry 11 medical and he. J. Nanobiotechnology. (2018). https://doi.org/10.1186/s12951-018-0392-8

Article  Google Scholar 

Destache, C.J., Belgum, T., Christensen, K., Shibata, A., Sharma, A., Dash, A.: Combination antiretroviral drugs in PLGA nanoparticle for HIV-1. BMC Infect. Dis. 9, 1–8 (2009). https://doi.org/10.1186/1471-2334-9-198

Article  CAS  Google Scholar 

Nowacek, A.S., McMillan, J., Miller, R., Anderson, A., Rabinow, B., Gendelman, H.E.: Nanoformulated antiretroviral drug combinations extend drug release and antiretroviral responses in HIV-1-infected macrophages: Implications for NeuroAIDS therapeutics. J. Neuroimmune Pharmacol. 5, 592–601 (2010). https://doi.org/10.1007/s11481-010-9198-7

Article  Google Scholar 

Mcclements, D.J.: Nanoscale nutrient delivery systems for food applications: improving bioactive dispersibility, stability, and bioavailability. J. Food Sci. 80, N1602–N1611 (2015). https://doi.org/10.1111/1750-3841.12919

Article  CAS  Google Scholar 

Sasaki, H., Sunagawa, Y., Takahashi, K., Imaizumi, A., Fukuda, H., Hashimoto, T., Wada, H., Katanasaka, Y., Kakeya, H., Fujita, M., Hasegawa, K., Morimoto, T.: Innovative preparation of curcumin for improved oral bioavailability. Biol. Pharm. Bull. 34, 660–665 (2011). https://doi.org/10.1248/bpb.34.660

Article  CAS  Google Scholar 

Celotti, E., Ferrarini, R., Zironi, R., Conte, L.S.: Resveratrol content of some wines obtained from dried Valpolicella grapes: recioto and amarone. J. Chromatogr. A. 730, 47–52 (1996). https://doi.org/10.1016/0021-9673(95)00962-0

Article  CAS  Google Scholar 

Summerlin, N., Soo, E., Thakur, S., Qu, Z., Jambhrunkar, S., Popat, A.: Resveratrol nanoformulations: challenges and opportunities. Int. J. Pharm. 479, 282–290 (2015). https://doi.org/10.1016/j.ijpharm.2015.01.003

Article  CAS  Google Scholar 

Sanna, V., Siddiqui, I.A., Sechi, M., Mukhtar, H.: Resveratrol-loaded nanoparticles based on poly(epsiloncaprolactone) and poly(D, L-lactic-co-glycolic acid)-poly(ethylene glycol) blend for prostate cancer treatment. Mol. Pharm. 10, 3871–3881 (2013). https://doi.org/10.1021/mp400342f

Article  CAS  Google Scholar 

Venuti, V., Cannavà, C., Cristiano, M.C., Fresta, M., Majolino, D., Paolino, D., Stancanelli, R., Tommasini, S., Ventura, C.A.: A characterization study of resveratrol/sulfobutyl ether-β-cyclodextrin inclusion complex and in vitro anticancer activity. Colloids Surfaces B Biointerfaces. 115, 22–28 (2014). https://doi.org/10.1016/j.colsurfb.2013.11.025

Article  CAS  Google Scholar 

Sessa, M., Balestrieri, M.L., Ferrari, G., Servillo, L., Castaldo, D., D’Onofrio, N., Donsì, F., Tsao, R.: Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chem. 147, 42–50 (2014). https://doi.org/10.1016/j.foodchem.2013.09.088

Article  CAS  Google Scholar 

Penalva, R., Esparza, I., Larraneta, E., González-Navarro, C.J., Gamazo, C., Irache, J.M.: Zein-based nanoparticles improve the oral bioavailability of resveratrol and its anti-inflammatory effects in a mouse model of endotoxic shock. J. Agric. Food Chem. 63, 5603–5611 (2015). https://doi.org/10.1021/jf505694e

Article  CAS  Google Scholar 

Catania, A., Barrajón-Catalán, E., Nicolosi, S., Cicirata, F., Micol, V.: Immunoliposome encapsulation increases cytotoxic activity and selectivity of curcumin and resveratrol against HER2 overexpressing human breast cancer cells. Breast Cancer Res. Treat. 141, 55–65 (2013). https://doi.org/10.1007/s10549-013-2667-y

Article  CAS  Google Scholar 

Soo, E., Thakur, S., Qu, Z., Jambhrunkar, S., Parekh, H.S., Popat, A.: Enhancing delivery and cytotoxicity of resveratrol through a dual nanoencapsulation approach. J. Colloid Interface Sci. 462, 368–374 (2016). https://doi.org/10.1016/j.jcis.2015.10.022

Article  CAS  Google Scholar 

Wang, Z., Yu, X., Li, Y. V.: Zinc chelation promotes streptokinase-induced thrombolysis in vitro. Int. J. Physiol. Pathophysiol. Pharmacol. 9, 137–146 (2017). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698690.

Vallet-Regí, M., Colilla, M., Izquierdo-Barba, I., Manzano, M.: Mesoporous silica nanoparticles for drug delivery: current insights. Molecules 23, 1–19 (2018). https://doi.org/10.3390/molecules23010047

Article  CAS  Google Scholar 

Florek, J., Caillard, R., Kleitz, F.: Evaluation of mesoporous silica nanoparticles for oral drug delivery: current status and perspective of MSNs drug carriers. Nanoscale 9(40), 15252–15277 (2017)

Article  CAS  Google Scholar 

Buzea, C., Pacheco, I: Toxicity of nanoparticles. Woodhead Publishing, pp 705–754 (2019)

Kipp, J.E.: The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm. 284, 109–122 (2004). https://doi.org/10.1016/j.ijpharm.2004.07.019

Article  CAS  Google Scholar 

Duncan, R.: The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2, 347–360 (2003). https://doi.org/10.1038/nrd1088

Article  CAS  Google Scholar 

Baran, E.T., Özer, N., Hasirci, V.: In vivo half life of nanoencapsulated L-asparaginase. J. Mater. Sci. Mater. Med. 13, 1113–1121 (2002). https://doi.org/10.1023/A:1021125617828

Article  CAS  Google Scholar 

Cascone, M.G., Lazzeri, L., Carmignani, C., Zhu, Z.: Gelatin nanoparticles produced by a simple W/O emulsion as delivery system for methotrexate. J. Mater. Sci. Mater. Med. 13, 523–526 (2002). https://doi.org/10.1023/A:1014791327253

Article  CAS  Google Scholar 

Rosenblum, D., Joshi, N., Tao, W., Karp, J.M., Peer, D.: Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 9, 1410 (2018). https://doi.org/10.1038/s41467-018-03705-y

Article  CAS 

留言 (0)

沒有登入
gif