Small-molecule 7,8-dihydroxyflavone counteracts compensated and decompensated cardiac hypertrophy via AMPK activation

[1] Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 2016; 97: 245−262. doi: 10.1016/j.yjmcc.2016.06.001 [2] Tham YK, Bernardo BC, Ooi JY, et al. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 2015; 89: 1401−1438. doi: 10.1007/s00204-015-1477-x [3] [4] Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 2018; 15: 387−407. doi: 10.1038/s41569-018-0007-y [5] Rosca MG, Tandler B, Hoppel CL. Mitochondria in cardiac hypertrophy and heart failure. J Mol Cell Cardiol 2013; 55: 31−41. doi: 10.1016/j.yjmcc.2012.09.002 [6]

Chen Y, Ge Z, Huang S, et al. Delphinidin attenuates pathological cardiac hypertrophy via the AMPK/NOX/MAPK signaling pathway. Aging (Albany NY) 2020; 12: 5362−5383.

[7] Marino A, Hausenloy DJ, Andreadou I, et al. AMP-activated protein kinase: A remarkable contributor to preserve a healthy heart against ROS injury. Free Radic Biol Med 2021; 166: 238−254. doi: 10.1016/j.freeradbiomed.2021.02.047 [8] Beauloye C, Bertrand L, Horman S, et al. AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovasc Res 2011; 90: 224−233. doi: 10.1093/cvr/cvr034 [9] Wang B, Nie J, Wu L, et al. AMPKalpha2 protects against the development of heart failure by enhancing mitophagy via PINK1 phosphorylation. Circ Res 2018; 122: 712−729. doi: 10.1161/CIRCRESAHA.117.312317 [10] Guo S, Yao Q, Ke Z, et al. Resveratrol attenuates high glucose-induced oxidative stress and cardiomyocyte apoptosis through AMPK. Mol Cell Endocrinol 2015; 412: 85−94. doi: 10.1016/j.mce.2015.05.034 [11] Jiang YJ, Sun SJ, Cao WX, et al. Excessive ROS production and enhanced autophagy contribute to myocardial injury induced by branched-chain amino acids: Roles for the AMPK-ULK1 signaling pathway and alpha7nAChR. Biochim Biophys Acta Mol Basis Dis 2021; 1867: 165980. doi: 10.1016/j.bbadis.2020.165980 [12] Wu S, Zou MH. AMPK, Mitochondrial function, and cardiovascular disease. Int J Mol Sci 2020; 21: 4987. doi: 10.3390/ijms21144987 [13] Feng N, Huke S, Zhu G, et al. Constitutive BDNF/TrkB signaling is required for normal cardiac contraction and relaxation. Proc Natl Acad Sci U S A 2015; 112: 1880−1885. doi: 10.1073/pnas.1417949112 [14]

Fulgenzi G, Tomassoni-Ardori F, Babini L, Becker J, Barrick C, Puverel S, Tessarollo L. BDNF modulates heart contraction force and long-term homeostasis through truncated TrkB. T1 receptor activation. J Cell Biol 2015; 210: 1003−1012.

[15] Matsumoto J, Takada S, Kinugawa S, et al. Brain-derived neurotrophic factor improves limited exercise capacity in mice with heart failure. Circulation 2018; 138: 2064−2066. doi: 10.1161/CIRCULATIONAHA.118.035212 [16] Matsumoto J, Takada S, Furihata T, et al. Brain-derived neurotrophic factor Improves impaired fatty acid oxidation via the activation of adenosine monophosphate-activated protein kinase-α- proliferator-activated receptor-γ coactivator-1α signaling in skeletal muscle of mice with heart failure. Circ Heart Fail 2021; 14: e005890. doi: 10.1161/CIRCHEARTFAILURE.119.005890 [17] Andero R, Heldt SA, Ye K, et al. Effect of 7, 8-dihydroxyflavone, a small-molecule TrkB agonist, on emotional learning. Am J Psychiatry 2011; 168: 163−172. doi: 10.1176/appi.ajp.2010.10030326 [18] Paul R, Nath J, Paul S, et al. Suggesting 7, 8-dihydroxyflavone as a promising nutraceutical against CNS disorders. Neurochem Int 2021; 148: 105068. doi: 10.1016/j.neuint.2021.105068 [19] Zhao J, Du J, Pan Y, et al. Activation of cardiac TrkB receptor by its small molecular agonist 7, 8-dihydroxyflavone inhibits doxorubicin-induced cardiotoxicity via enhancing mitochondrial oxidative phosphorylation. Free Radic Biol Med 2019; 130: 557−567. doi: 10.1016/j.freeradbiomed.2018.11.024 [20] Wang Z, Wang SP, Shao Q, et al. Brain-derived neurotrophic factor mimetic, 7, 8-dihydroxyflavone, protects against myocardial ischemia by rebalancing optic atrophy 1 processing. Free Radic Biol Med 2019; 145: 187−197. doi: 10.1016/j.freeradbiomed.2019.09.033 [21] Xuan L, Zhu Y, Liu Y, et al. Up-regulation of miR-195 contributes to cardiac hypertrophy-induced arrhythmia by targeting calcium and potassium channels. J Cell Mol Med 2020; 24: 7991−8005. doi: 10.1111/jcmm.15431 [22] Zhang Y, Jiao L, Sun L, et al. LncRNA ZFAS1 as a SERCA2a inhibitor to cause intracellular Ca2+ overload and contractile dysfunction in a mouse model of myocardial infarction. Circ Res 2018; 122: 1354−1368. doi: 10.1161/CIRCRESAHA.117.312117 [23] Hang P, Zhao J, Sun L, et al. Brain-derived neurotrophic factor attenuates doxorubicin-induced cardiac dysfunction through activating Akt signalling in rats. J Cell Mol Med 2017; 21: 685−696. doi: 10.1111/jcmm.13012 [24] Zhao Y, Wang C, Wu J, et al. Choline protects against cardiac hypertrophy induced by increased after-load. Int J Biol Sci 2013; 9: 295−302. doi: 10.7150/ijbs.5976 [25] Schwefel K, Spiegler S, Kirchmaier BC, et al. Fibronectin rescues aberrant phenotype of endothelial cells lacking either CCM1, CCM2 or CCM3. FASEB J 2020; 34: 9018−9033. doi: 10.1096/fj.201902888R [26] Lew M. Good statistical practice in pharmacology. Problem 2. Br J Pharmacol 2007; 152: 299−303. doi: 10.1038/sj.bjp.0707372 [27] Marin-Garcia J, Akhmedov AT. Mitochondrial dynamics and cell death in heart failure. Heart Fail Rev 2016; 21: 123−136. doi: 10.1007/s10741-016-9530-2 [28] Oldfield CJ, Duhamel TA, Dhalla NS. Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Can J Physiol Pharmacol 2020; 98: 74−84. doi: 10.1139/cjpp-2019-0566 [29] Osterholt M, Nguyen TD, Schwarzer M, et al. Alterations in mitochondrial function in cardiac hypertrophy and heart failure. Heart Fail Rev 2013; 18: 645−656. doi: 10.1007/s10741-012-9346-7 [30] Xu CN, Kong LH, Ding P, et al. Melatonin ameliorates pressure overload-induced cardiac hypertrophy by attenuating Atg5-dependent autophagy and activating the Akt/mTOR pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866: 165848. doi: 10.1016/j.bbadis.2020.165848 [31] Zhao D, Zhong G, Li J, et al. Targeting E3 ubiquitin ligase WWP1 prevents cardiac hypertrophy through destabilizing DVL2 via inhibition of K27-linked ubiquitination. Circulation 2021; 144: 694−711. doi: 10.1161/CIRCULATIONAHA.121.054827 [32] Sung MM, Byrne NJ, Kim TT, et al. Cardiomyocyte-specific ablation of CD36 accelerates the progression from compensated cardiac hypertrophy to heart failure. Am J Physiol Heart Circ Physiol 2017; 312: H552−H560. doi: 10.1152/ajpheart.00626.2016 [33] Liu J, Hu J, Tan L, et al. Abnormalities in lysine degradation are involved in early cardiomyocyte hypertrophy development in pressure-overloaded rats. BMC Cardiovasc Disord 2021; 21: 403. doi: 10.1186/s12872-021-02209-w [34] Mao S, Luo X, Li Y, et al. Role of PI3K/AKT/mTOR pathway associated oxidative stress and cardiac dysfunction in takotsubo syndrome. Curr Neurovasc Res 2020; 17: 35−43. doi: 10.2174/1567202617666191223144715 [35] Li W, Yang J, Lyu Q, et al. Taurine attenuates isoproterenol-induced H9c2 cardiomyocytes hypertrophy by improving antioxidative ability and inhibiting calpain-1-mediated apoptosis. Mol Cell Biochem 2020; 469: 119−132. doi: 10.1007/s11010-020-03733-7 [36] Agrawal R, Tyagi E, Vergnes L, et al. Coupling energy homeostasis with a mechanism to support plasticity in brain trauma. Biochim Biophys Acta 2014; 1842: 535−546. doi: 10.1016/j.bbadis.2013.12.004 [37] Agrawal R, Noble E, Tyagi E, et al. Flavonoid derivative 7, 8-DHF attenuates TBI pathology via TrkB activation. Biochim Biophys Acta 2015; 1852: 862−872. doi: 10.1016/j.bbadis.2015.01.018 [38] Krishna G, Agrawal R, Zhuang Y, et al. 7, 8-Dihydroxyflavone facilitates the action exercise to restore plasticity and functionality: Implications for early brain trauma recovery. Biochim Biophys Acta Mol Basis Dis 2017; 1863: 1204−1213. doi: 10.1016/j.bbadis.2017.03.007 [39] Chan CB, Tse MC, Liu X, et al. Activation of muscular TrkB by its small molecular agonist 7, 8-dihydroxyflavone sex-dependently regulates energy metabolism in diet-induced obese mice. Chem Biol 2015; 22: 355−368. doi: 10.1016/j.chembiol.2015.02.003 [40] Wood J, Tse MCL, Yang X, et al. BDNF mimetic alleviates body weight gain in obese mice by enhancing mitochondrial biogenesis in skeletal muscle. Metabolism 2018; 87: 113−122. doi: 10.1016/j.metabol.2018.06.007 [41] Zhang Z, Wang B, Fei A. BDNF contributes to the skeletal muscle anti-atrophic effect of exercise training through AMPK-PGC1α signaling in heart failure mice. Arch Med Sci 2019; 15: 214−222. doi: 10.5114/aoms.2018.81037 [42] Day EA, Ford RJ, Steinberg GR. AMPK as a therapeutic target for treating metabolic diseases. Trends Endocrinol Metab 2017; 28: 545−560. doi: 10.1016/j.tem.2017.05.004 [43] Liu C, Chan CB, Ye K. 7, 8-dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders. Transl Neurodegener 2016; 5: 2. doi: 10.1186/s40035-015-0048-7 [44] Zhang X, Zhang Z, Wang P, et al. Bawei Chenxiang Wan ameliorates cardiac hypertrophy by activating AMPK/PPAR-α signaling pathway improving energy metabolism. Front Pharmacol 2021; 12: 653901. doi: 10.3389/fphar.2021.653901 [45] Watkins SJ, Borthwick GM, Arthur HM. The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell Dev Biol Anim 2011; 47: 125−131. doi: 10.1007/s11626-010-9368-1

留言 (0)

沒有登入
gif