Recent advancements in Janus nanoparticle-based biosensing platforms

Mitchell, M.J., Billingsley, M.M., Haley, R.M., Wechsler, M.E., Peppas, N.A., Langer, R.: Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20(2), 101–124 (2021). https://doi.org/10.1038/s41573-020-0090-8

Article  CAS  Google Scholar 

Mohammadi Ziarani, G., Malmir, M., Lashgari, N., Badiei, A.: The role of hollow magnetic nanoparticles in drug delivery. RSC Adv. 9(43), 25094–25106 (2019). https://doi.org/10.1039/c9ra01589b

Article  CAS  Google Scholar 

Chen, W., Glackin, C.A., Horwitz, M.A., Zink, J.I.: Nanomachines and other caps on mesoporous silica nanoparticles for drug delivery. Acc. Chem. Res. 52(6), 1531–1542 (2019). https://doi.org/10.1021/acs.accounts.9b00116

Article  CAS  Google Scholar 

Yin, X.T., et al.: A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. J. Alloys Compd. 805, 229–236 (2019). https://doi.org/10.1016/j.jallcom.2019.07.081

Article  CAS  Google Scholar 

Gloag, L., Mehdipour, M., Chen, D., Tilley, R.D., Gooding, J.J.: Advances in the application of magnetic nanoparticles for sensing. Adv. Mater. 31(48), 1–26 (2019). https://doi.org/10.1002/adma.201904385

Article  CAS  Google Scholar 

Chu, H.W., et al.: Nanoparticle-based LDI-MS immunoassay for the multiple diagnosis of viral infections. ACS Sens. 4(6), 1543–1551 (2019). https://doi.org/10.1021/acssensors.9b00054

Article  CAS  Google Scholar 

Zhang, H., Ke, H., Wang, Y., Li, P., Huang, C., Jia, N.: 3D carbon nanosphere and gold nanoparticle-based voltammetric cytosensor for cell line A549 and for early diagnosis of non-small cell lung cancer cells. Microchim. Acta 186(1), 2–8 (2019). https://doi.org/10.1007/s00604-018-3160-4

Article  CAS  Google Scholar 

Dissanayake, N.M., Arachchilage, J.S., Samuels, T.A., Obare, S.O.: Highly sensitive plasmonic metal nanoparticle-based sensors for the detection of organophosphorus pesticides. Talanta 200, 218–227 (2019). https://doi.org/10.1016/j.talanta.2019.03.042

Article  CAS  Google Scholar 

Rahman, M.M., Alam, M.M., Asiri, A.M.: Development of an efficient phenolic sensor based on facile Ag2O/Sb2O3 nanoparticles for environmental safety. Nanoscale Adv. 1(2), 696–705 (2019). https://doi.org/10.1039/c8na00034d

Article  CAS  Google Scholar 

Wu, L., et al.: Surface-imprinted gold nanoparticle-based surface-enhanced raman scattering for sensitive and specific detection of patulin in food samples. Food Anal. Methods 12(7), 1648–1657 (2019). https://doi.org/10.1007/s12161-019-01498-4

Article  Google Scholar 

Li, Y., Wang, Z., Sun, L., Liu, L., Xu, C., Kuang, H.: Nanoparticle-based sensors for food contaminants. TrAC Trends Anal. Chem. 113, 74–83 (2019). https://doi.org/10.1016/j.trac.2019.01.012

Article  CAS  Google Scholar 

Ular, N., Üzer, A., Durmazel, S., Erçaǧ, E., Apak, R.: Diaminocyclohexane-functionalized/thioglycolic acid-modified gold nanoparticle-based colorimetric sensing of trinitrotoluene and tetryl. ACS Sens. 3(11), 2335–2342 (2018). https://doi.org/10.1021/acssensors.8b00709

Article  CAS  Google Scholar 

Üzer, A., Can, Z., Akin, I., Erçaǧ, E., Apak, R.: 4-aminothiophenol functionalized gold nanoparticle-based colorimetric sensor for the determination of nitramine energetic materials. Anal. Chem. 86(1), 351–356 (2014). https://doi.org/10.1021/ac4032725

Article  CAS  Google Scholar 

Gui, Y., Xie, C., Xu, J., Wang, G.: Detection and discrimination of low concentration explosives using MOS nanoparticle sensors. J. Haz. Mater. 164(2–3), 1030–1035 (2009). https://doi.org/10.1016/j.jhazmat.2008.09.011

Article  CAS  Google Scholar 

Charbgoo, F., Ramezani, M., Darroudi, M.: Bio-sensing applications of cerium oxide nanoparticles: advantages and disadvantages. Biosens. Bioelectron. 96, 33–43 (2017). https://doi.org/10.1016/j.bios.2017.04.037

Article  CAS  Google Scholar 

Su, H., Hurd Price, C.A., Jing, L., Tian, Q., Liu, J., Qian, K.: Janus particles: design, preparation, and biomedical applications. Mater Today Bio. 4, 100033 (2019). https://doi.org/10.1016/j.mtbio.2019.100033

Article  CAS  Google Scholar 

Sun, X.T., Zhang, Y., Zheng, D.H., Yue, S., Yang, C.G., Xu, Z.R.: Multitarget sensing of glucose and cholesterol based on Janus hydrogel microparticles. Biosens. Bioelectron. 92(February), 81–86 (2017). https://doi.org/10.1016/j.bios.2017.02.008

Article  CAS  Google Scholar 

Xie, H., She, Z.G., Wang, S., Sharma, G., Smith, J.W.: One-step fabrication of polymeric Janus nanoparticles for drug delivery. Langmuir 28(9), 4459–4463 (2012). https://doi.org/10.1021/la2042185

Article  CAS  Google Scholar 

Safaie, N., Ferrier, R.C.: Janus nanoparticle synthesis: overview, recent developments, and applications. J. Appl. Phys. (2020). https://doi.org/10.1063/5.0003329

Article  Google Scholar 

Jiang, S., Granick, S.: Janus balance of amphiphilic colloidal particles. J. Chem. Phys. (2007). https://doi.org/10.1063/1.2803420

Article  Google Scholar 

Walther, A., Müller, A.H.E.: Janus particles. Soft Matter 4(4), 663–668 (2008). https://doi.org/10.1039/b718131k

Article  CAS  Google Scholar 

Gheisari, F., et al.: Janus nanoparticles: an efficient intelligent modern nanostructure for eradicating cancer. Drug Metab. Rev. 53(4), 592–603 (2021). https://doi.org/10.1080/03602532.2021.1878530

Article  CAS  Google Scholar 

Lattuada, M., Hatton, T.A.: Synthesis, properties and applications of Janus nanoparticles. Nano Today 6(3), 286–308 (2011). https://doi.org/10.1016/j.nantod.2011.04.008

Article  CAS  Google Scholar 

Lazarides, A.A., Lance Kelly, K., Jensen, T.R., Schatz, G.C.: Optical properties of metal nanoparticles and nanoparticle aggregates important in biosensors. J. Mol. Struct. THEOCHEM 529(1–3), 59–63 (2000). https://doi.org/10.1016/S0166-1280(00)00532-7

Article  CAS  Google Scholar 

Anker, J.N., Behrend, C., Kopelman, R.: Aspherical magnetically modulated optical nanoprobes (MagMOONs). J. Appl. Phys. 93(102), 6698–6700 (2003). https://doi.org/10.1063/1.1556926

Article  CAS  Google Scholar 

Xing, Y., et al.: Construction strategy for ratiometric fluorescent probe based on Janus silica nanoparticles as a platform toward intracellular pH detection. Talanta 205(May), 120021 (2019). https://doi.org/10.1016/j.talanta.2019.06.021

Article  CAS  Google Scholar 

Russell, S.M., Alba-Patiño, A., Borges, M., de la Rica, R.: Multifunctional motion-to-color janus transducers for the rapid detection of sepsis biomarkers in whole blood. Biosens. Bioelectron. 140, 111346 (2019). https://doi.org/10.1016/j.bios.2019.111346

Article  CAS  Google Scholar 

Soylemez, S., Udum, Y.A., Kesik, M., Gündoʇdu Hizliateş, C., Ergun, Y., Toppare, L.: Electrochemical and optical properties of a conducting polymer and its use in a novel biosensor for the detection of cholesterol. Sens. Actu. B Chem. 212, 425–433 (2015). https://doi.org/10.1016/j.snb.2015.02.045

Article  CAS  Google Scholar 

Zhang, G., et al.: A fast and general approach to produce a carbon coated Janus metal/oxide hybrid for catalytic water splitting. J. Mater. Chem. A 9(12), 7606–7616 (2021). https://doi.org/10.1039/d0ta12021a

Article  CAS  Google Scholar 

Iqbal, M.Z., et al.: A facile fabrication route for binary transition metal oxide-based Janus nanoparticles for cancer theranostic applications. Nano Res. 11(10), 5735–5750 (2018). https://doi.org/10.1007/s12274-017-1628-x

Article  CAS  Google Scholar 

Sanchez-Vazquez, B., Amaral, A.J.R., Yu, D.G., Pasparakis, G., Williams, G.R.: Electrosprayed Janus particles for combined photo-chemotherapy. AAPS PharmSciTech 18(5), 1460–1468 (2017). https://doi.org/10.1208/s12249-016-0638-4

Article  CAS  Google Scholar 

Karshalev, E., et al.: Micromotors for active delivery of minerals toward the treatment of iron deficiency anemia. Nano Lett. 19(11), 7816–7826 (2019). https://doi.org/10.1021/acs.nanolett.9b02832

Article  CAS  Google Scholar 

Feng, Z.Q., et al.: Magnetic Janus particles as a multifunctional drug delivery system for paclitaxel in efficient cancer treatment. Mater. Sci. Eng. C 104(June), 110001 (2019). https://doi.org/10.1016/j.msec.2019.110001

Article  CAS  Google Scholar 

Le, T.C., Zhai, J., Chiu, W.H., Tran, P.A., Tran, N.: Janus particles: recent advances in the biomedical applications. Int. J. Nanomed. 14, 6749–6777 (2019). https://doi.org/10.2147/IJN.S169030

Article  CAS  Google Scholar 

Chen, J., et al.: Click-grafting of cardanol onto mesoporous silica/silver Janus particles for enhanced hemostatic and antibacterial performance. ACS Appl. Bio Mater. 3(12), 9054–9064 (2020). https://doi.org/10.1021/acsabm.0c01267

Article  CAS  Google Scholar 

Dehghani, E., Barzgari-Mazgar, T., Salami-Kalajahi, M., Kahaie-Khosrowshahi, A.: A pH-controlled approach to fabricate electrolyte/non-electrolyte janus particles with low cytotoxicity as carriers of DOX. Mater. Chem. Phys. 249(March), 123000 (2020). https://doi.org/10.1016/j.matchemphys.2020.123000

Article  CAS  Google Scholar 

Li, X., et al.: Degradation-restructuring induced anisotropic epitaxial growth for fabrication of asymmetric diblock and triblock mesoporous nanocomposites. Adv. Mater. 29(30), 1–8 (2017). https://doi.org/10.1002/adma.201701652

Article  CAS  Google Scholar 

Ye, Y., et al.: Fabrication of self-propelled micro- and nanomotors based on Janus structures. Chem. A Eur. J. 25(37), 8663–8680 (2019). https://doi.org/10.1002/chem.201900840

Article  CAS  Google Scholar 

Tan, J.S.J., Chen, Z.: Mask-less preparation of Janus particles through ultraviolet irradiation on hydrophobic particles assembled at the air-water interface. J. Colloid Interface Sci. 546, 285–292 (2019). https://doi.org/10.1016/j.jcis.2019.03.081

Article  CAS  Google Scholar 

Wang, K., Wang, W., Pan, S., Fu, Y., Dong, B., Wang, H.: Fluorescent self-propelled covalent organic framework as a microsensor for nitro explosive detection. Appl. Mater. Today 19, 100550 (2020). https://doi.org/10.1016/j.apmt.2019.100550

Article  Google Scholar 

Sun, X.T., Yang, C.G., Xu, Z.R.: Controlled production of size-tunable Janus droplets for submicron particle synthesis using an electrospray microfluidic chip. RSC Adv. 6(15), 12042–12047 (2016). https://doi.org/10.1039/c5ra24531a

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif