Epigenetic Dysregulation in Autoimmune and Inflammatory Skin Diseases

Hirst M, Marra MA (2009) Epigenetics and human disease. Int J Biochem Cell Biol 41(1):136–146. https://doi.org/10.1016/j.biocel.2008.09.011

Article  CAS  PubMed  Google Scholar 

Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1(2):76–80. https://doi.org/10.4161/epi.1.2.2762

Article  PubMed  Google Scholar 

Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447(7143):433–440. https://doi.org/10.1038/nature05919

Article  CAS  PubMed  Google Scholar 

Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27. https://doi.org/10.1016/j.cell.2012.06.013

Article  CAS  PubMed  Google Scholar 

Arozarena I, Wellbrock C (2019) Phenotype plasticity as enabler of melanoma progression and therapy resistance. Nat Rev Cancer 19(7):377–391. https://doi.org/10.1038/s41568-019-0154-4

Article  CAS  PubMed  Google Scholar 

Kim E, Zucconi BE, Wu M et al (2019) MITF expression predicts therapeutic vulnerability to p300 inhibition in human melanoma. Cancer Res 79(10):2649–2661. https://doi.org/10.1158/0008-5472.can-18-2331

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu Y, Schleich K, Yue B et al (2018) Targeting the senescence-overriding cooperative activity of structurally unrelated H3K9 demethylases in melanoma. Cancer Cell 33(2):322–336.e8. https://doi.org/10.1016/j.ccell.2018.01.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ceol CJ, Houvras Y, Jane-Valbuena J et al (2011) The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471(7339):513–517. https://doi.org/10.1038/nature09806

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shanmugam MK, Sethi G (2013) Role of epigenetics in inflammation-associated diseases. Subcell Biochem 61:627–657. https://doi.org/10.1007/978-94-007-4525-4_27

Article  CAS  PubMed  Google Scholar 

Hewagama A, Richardson B (2009) The genetics and epigenetics of autoimmune diseases. J Autoimmun 33(1):3–11. https://doi.org/10.1016/j.jaut.2009.03.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6(8):597–610. https://doi.org/10.1038/nrg1655

Article  CAS  PubMed  Google Scholar 

Chahrour M, Jung SY, Shaw C et al (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320(5880):1224–1229. https://doi.org/10.1126/science.1153252

Article  CAS  PubMed  PubMed Central  Google Scholar 

Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068. https://doi.org/10.1038/nbt.1685

Article  CAS  PubMed  Google Scholar 

Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13(5):343–357. https://doi.org/10.1038/nrg3173

Article  CAS  PubMed  PubMed Central  Google Scholar 

Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874. https://doi.org/10.1038/nrg3074

Article  CAS  PubMed  Google Scholar 

Shi X, Sun M, Liu H et al (2013) Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett 339(2):159–166. https://doi.org/10.1016/j.canlet.2013.06.013

Article  CAS  PubMed  Google Scholar 

Yu C-Y, Kuo H-C (2019) The emerging roles and functions of circular RNAs and their generation. J Biomed Sci 26(1):29. https://doi.org/10.1186/s12929-019-0523-z

Article  PubMed  PubMed Central  Google Scholar 

Zhou Y, Kong Y, Fan W et al (2020) Principles of RNA methylation and their implications for biology and medicine. Biomed Pharmacother 131:110731. https://doi.org/10.1016/j.biopha.2020.110731

Article  CAS  PubMed  Google Scholar 

Mansuri MS, Singh M, Dwivedi M et al (2014) MicroRNA profiling reveals differentially expressed microRNA signatures from the skin of patients with nonsegmental vitiligo. Br J Dermatol 171(5):1263–1267. https://doi.org/10.1111/bjd.13109

Article  CAS  PubMed  Google Scholar 

Wang M, Chen H, Qiu J et al (2020) Antagonizing miR-7 suppresses B cell hyperresponsiveness and inhibits lupus development. J Autoimmun 109:102440. https://doi.org/10.1016/j.jaut.2020.102440

Article  CAS  PubMed  Google Scholar 

Malaab M, Renaud L, Takamura N et al (2022) Antifibrotic factor KLF4 is repressed by the miR-10/TFAP2A/TBX5 axis in dermal fibroblasts: insights from twins discordant for systemic sclerosis. Ann Rheum Dis 81(2):268–277. https://doi.org/10.1136/annrheumdis-2021-221050

Article  CAS  PubMed  Google Scholar 

Shi YL, Weiland M, Li J et al (2013) MicroRNA expression profiling identifies potential serum biomarkers for non-segmental vitiligo. Pigment Cell Melanoma Res 26(3):418–421. https://doi.org/10.1111/pcmr.12086

Article  CAS  PubMed  Google Scholar 

Yao Q, Xing Y, Wang Z et al (2020) MiR-16–5p suppresses myofibroblast activation in systemic sclerosis by inhibiting NOTCH signaling. Aging (Albany NY) 13(2):2640–2654. https://doi.org/10.18632/aging.202308

Article  Google Scholar 

Masalha M, Sidi Y, Avni D (2018) The contribution of feedback loops between miRNAs, cytokines and growth factors to the pathogenesis of psoriasis. Exp Dermatol 27(6):603–610. https://doi.org/10.1111/exd.13520

Article  PubMed  Google Scholar 

Kaga H, Komatsuda A, Omokawa A et al (2015) Downregulated expression of miR-155, miR-17, and miR-181b, and upregulated expression of activation-induced cytidine deaminase and interferon-alpha in PBMCs from patients with SLE. Mod Rheumatol 25(6):865–70. https://doi.org/10.3109/14397595.2015.1030102

Article  CAS  PubMed  Google Scholar 

Aguennouz MH, Guarneri F, Oteri R et al (2021) Serum levels of miRNA-21–5p in vitiligo patients and effects of miRNA-21–5p on SOX5, beta-catenin, CDK2 and MITF protein expression in normal human melanocytes. J Dermatol Sci 101(1):22–29. https://doi.org/10.1016/j.jdermsci.2020.10.014

Article  CAS  PubMed  Google Scholar 

Suo QF, Sheng J, Qiang FY et al (2018) Association of long non-coding RNA GAS5 and miR-21 levels in CD4(+) T cells with clinical features of systemic lupus erythematosus. Exp Ther Med 15(1):345–350. https://doi.org/10.3892/etm.2017.5429

Article  CAS  PubMed  Google Scholar 

Meisgen F, Xu N, Wei T et al (2012) MiR-21 is up-regulated in psoriasis and suppresses T cell apoptosis. Exp Dermatol 21(4):312–314. https://doi.org/10.1111/j.1600-0625.2012.01462.x

Article  CAS  PubMed  Google Scholar 

Zhu H, Luo H, Li Y et al (2013) MicroRNA-21 in scleroderma fibrosis and its function in TGF-beta-regulated fibrosis-related genes expression. J Clin Immunol 33(6):1100–1109. https://doi.org/10.1007/s10875-013-9896-z

Article  CAS  PubMed  Google Scholar 

Liu Y, Wang X, Yang D et al (2014) MicroRNA-21 affects proliferation and apoptosis by regulating expression of PTEN in human keloid fibroblasts. Plast Reconstr Surg 134(4):561e–e573. https://doi.org/10.1097/PRS.0000000000000577

Article  CAS  PubMed  Google Scholar 

Sonkoly E, Wei T, Janson PC et al (2007) MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One 2(7):e610. https://doi.org/10.1371/journal.pone.0000610

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hessam S, Sand M, Skrygan M et al (2017) Expression of miRNA-155, miRNA-223, miRNA-31, miRNA-21, miRNA-125b, and miRNA-146a in the inflammatory pathway of hidradenitis suppurativa. Inflammation 40(2):464–472. https://doi.org/10.1007/s10753-016-0492-2

Article  CAS  PubMed  Google Scholar 

Li C, Bai Y, Liu H et al (2013) Comparative study of microRNA profiling in keloid fibroblast and annotation of differential expressed microRNAs. Acta Biochim Biophys Sin (Shanghai) 45(8):692–699. https://doi.org/10.1093/abbs/gmt057

Article  CAS  Google Scholar 

Ciechomska M, Wojtas B, Swacha M et al (2020) Global miRNA and mRNA expression profiles identify miRNA-26a-2–3p-dependent repression of IFN signature in systemic sclerosis human monocytes. Eur J Immunol 50(7):1057–1066. https://doi.org/10.1002/eji.201948428

Article  CAS  PubMed  Google Scholar 

Henderson J, Wilkinson S, Przyborski S et al (2021) microRNA27a-3p mediates reduction of the Wnt antagonist sFRP-1 in systemic sclerosis. Epigenetics 16(7):808–817. https://doi.org/10.1080/15592294.2020.1827715

Article  PubMed  Google Scholar 

Maurer B, Stanczyk J, Jungel A et al (2010) MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum 62(6):1733–1743. https://doi.org/10.1002/art.27443

Article 

留言 (0)

沒有登入
gif